ВЛИЯНИЕ КЛАССА УСЛОВИЙ ТРУДА НА СТАЖ РАБОТНИКОВ ПРИ ВОЗНИКНОВЕНИИ ПРОФЕССИОНАЛЬНЫХ ЗАБОЛЕВАНИЙ В КЕМЕРОВСКОЙ ОБЛАСТИ

МИХАЙЛУЦ А.П.¹, СУВИДОВА Т.А.²

¹ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия ²ФБУЗ «Центр гигиены и эпидемиологии в Кемеровской области», Кемерово, Россия

ORIGINAL ARTICLE

INFLUENCE OF HARMFUL WORKING CONDITIONS ON LENGTH OF WORK IN WORKERS WITH OCCUPATIONAL DISEASES IN KEMEROVO REGION

ANATOLIY P. MIKHAYLUTS¹, TATIANA A. SUVIDOVA²

¹Kemerovo State Medical University (22a, Voroshilova Street, Kemerovo, 650056), Russian Federation

²Kemerovo Region Center for Hygiene and Epidemiology (1, Shestakova Street, Kemerovo, 650099), Russian Federation

Резюме

Цель. Установление количественных зависимостей стажа работников при возникновении ПЗ от степени вредных З класса условий труда с определением потерь в профессиональном стаже при воздействии различных факторов рабочей среды и трудового процесса.

Материалы и методы. В исследовании рассмотрены диагностированные в 2008-2015 гг. в Кемеровской области (КО) 4860 случаев ПЗ, по каждому из которых имелись акты расследования, содержащие данные о диагнозе, профессиональном маршруте и стаже при возникновении ПЗ, воздействующих факторах рабочей среды, классе условий труда, причинах и обстоятельствах возникновения ПЗ. Для установления количественных зависимостей между степенью 3 класса условий труда и стажем работы до возникновения ПЗ использовался многофакторный корреляционно-регрессионный анализ по программе «Multiple Regression» пакета Statistica 6,0. Получены уравнения множественной линейной регрессии с коэффициентами корреляции, детерминации и степенью их статистической значимости.

Результаты. Определено, что между стажем работников при возникновении ПЗ и степенью 3 класса условий труда имеются прямые, сильные, статистически значимые связи, описываемые уравнениями линейной регрессии. Показано, что при условиях труда 2 класса, отвечающих требованиям гигиенических нормативов, профессиональный стаж может сохраняться до 34...37 лет. В зависимости от степени 3 класса условий труда стаж работников может с вероятностью 69...71 % составлять при возникновении: нейросенсорной тугоухости 16,4...29,7 года; вибрационной болезни 15...28 лет; пылевых бронхитов 14...31 год; болезней опорно-двигательного аппарата 12...30 лет. В КО с учетом ежегодно диагностированных 1050...1200 случаев ПЗ определены потенциальные потери стажа квалифицированными работниками из-за преждевременного прекращения профессиональной деятельности.

Заключение. Установлены количественные зависимости, описываемые уравнениями линейной регрессии, стажа работников при возникновении ПЗ от стажа 3 класса условий труда. При условиях труда 3 класса в зависимости от его степени наиболее распространенные в

КО ПЗ могут вероятностью 69...81 % возникать через 12...30 лет.

Ключевые слова: профессиональные заболевания, условия труда, факторы рабочей среды и трудового процесса.

English ► Abstract

Aim. To investigate the associations between harmful working conditions, length of work, and occupational diseases in Kemerovo Region.

Materials and Methods. We retrospectively assessed 4860 case histories of patients with occupational diseases who were admitted to the hospitals of Kemerovo Region in 2008-2015 following multivariate regression analysis.

Results. Workers without harmful conditions had an average length of work 34-37 years. Strikingly, workers with harmful conditions in

70% had either sensorineural hearing loss (length of work 16.4-29.7 years), vibration disease (length of work 15-28 years), dust bronchitis (length of work 14-31 years), or musculoskeletal system disorders (length of work 12-30 years).

Conclusion. Harmful working conditions can be a cause of occupational diseases within 12-30 working years in 69-81% of workers.

Keywords: occupational diseases, working conditions, factors of working environment and labor process.

Кемеровская область (КО) в течение 15 лет занимает первое место в Российской Федерации по уровням профессиональных заболеваний (ПЗ). Они, достигая 10,6...14,4 случая $^{0}_{000}$ в год, превышают аналогичный показатель в целом для Российской Федерации в 6,6...7,8 раза, составляющий 1,59...1,81 случая $^{0}_{000}$. Заслуживает внимания то, что вклад КО в общее число случаев ПЗ в Российской Федерации равен 15,4... 17,5 % [1, 2, 3].

Основной вклад в профессиональную заболеваемость в КО вносит угольная промышленность, на долю которой приходится 74...78 % случаев ПЗ. В тоже время ПЗ также диагностируются у работников предприятий металлургической промышленности, сельского хозяйства, транспорта, строительства и здравоохранения [1, 2, 3]. Это определяется тем, что в КО 23...34% работников заняты на объектах с вредными условиями труда 3 класса 1-4 степеней, при которых не соответствовали гигиеническим нормативам рабочие места по уровням шума в 43 %, вибрации в 38 %, микроклимату в 28 %, концентрации фиброгенных аэрозолей в 20 %, химических веществ в 17 %, освещенности в 27 %.

Гигиеническим аспектам профессиональной заболеваемости в Кузбассе посвящен ряд публикаций, в которых рассматриваются вопросы компьютерного моделирования санитарно-эпидемиологической обстановки [4], гигиениче-

ской оценки условий труда и безопасного стажа работы на угольных шахтах [5], оценки риска нарушений здоровья работников промышленных предприятий [6].

В то же время количественные зависимости между уровнями воздействия факторов рабочей среды и трудового процесса и стажем работников при развитии основных нозологических форм ПЗ остаются недостаточно изученными. Эта проблема является актуальной, так как одним из частых неблагоприятных последствий возникновения ПЗ для работника, кроме физических и моральных страданий, материального ущерба, является утрата профессиональной трудоспособности и преждевременный уход из профессии.

Цель исследования

Установление количественных зависимостей стажа работников при возникновении ПЗ от степени вредных З класса условий труда с определением потерь в профессиональном стаже при воздействии различных факторов рабочей среды и трудового процесса.

Материалы и методы

В исследовании использованы данные о 4860 случаях ПЗ, диагностированных в КО в 2008-2015 гг. На каждый случай имелись санитарно-гигиеническая характеристика условий труда (форма № 362-1/y-01), акт расследования

случая ПЗ (Положение о расследовании и учете профессиональных заболеваний в ред. Постановления Правительства РФ от 24.12.2014 № 1469), в которых содержалась информация о профессиональном трудовом маршруте, диагнозе ПЗ, стаже работы при выявлении ПЗ, классе условий труда фактора, вызвавшего ПЗ, классе условий труда фактора, сопутствующего основному, причинах и обстоятельствах возникновения ПЗ.

Для установления количественных зависимостей между степенью вредных 3 класса условий труда и стажем работников при возникновении ПЗ использовался многофакторный корреляционно-регрессионный анализ, программа которого «Multiple Regression» выбрана в пакете программ Statistica 6,0 (лицензия ВХХR006В092218FAN11).

При использовании корреляционно-регрессионного анализа определялись количественные зависимости между зависимыми и независимыми переменными, направленность и сила связей, коэффициенты корреля-

ции и детерминации, их статистическая значимость с получением уравнений линейной регрессии.

Результаты и обсуждение

В 2008-2015 гг. в КО 18,4...22,3 % ПЗ вызывались воздействием шума, 19,7...23,1 % - вибрацией, 14,5... 18,3 % - фиброгенными аэрозолями, 36,4...42,7 % - значительными физическими нагрузками.

В связи с этим в исследовании определялось влияние степени вредных 3 класса условий труда на стаж работников при развитии нейросенсорной тугоухости, вибрационной болезни, пылевых бронхитов, болезней опорно-двигательного аппарата.

Установлено, что имеются прямые, сильные (коэффициент корреляции 0,83...0,90), статистически значимые (р 0,022...0,029) связи, описываемые уравнениями линейной регрессии, между степенями вредных 3 класса условий труда основного и сопутствующего факторов и стажем работников при развитии ПЗ (таблица 1).

Независимая переменная, х₁ х₂ Зависимая степень 3 класса условий труда переменная (у), Профессиональное стаж, Rxy R²xy, % P заболевание **уравнение** вида основной фактор сопутствующий (x_1) фактор (x₂) $y = \alpha_0 - \alpha_1 x_1 - \alpha_2 x_2$ годы $y = 34,1 - 3,6x_1$ Нейросенсорная 71 0,027 0.84 ШУМ вибрация тугоухость 0,84х2' годы $y = 34,1 - 3,8x_1-$ Вибрационная 69 вибрация тяжесть труда 1.02x2. 0.83 0.029 болезнь годы $y = 37,4 - 3,8x_1$ фиброгенные Пылевые бронхиты 0,90 81 0.022 тяжесть труда $2,1x_{2}$ аэрозоли годы Болезни опорно $y = 36,3 - 4,5x_1$ охлаждающий 0,88 77 двигательного тяжесть труда $1,7x_2$ 0.023 микроклимат аппарата годы

Таблица 1. Зависимость стажа работников, при котором возникали профессиональные заболевания, от вида факторов и степени 3 класса условий труда

R_{xy} - коэффициент корреляции R²xy - коэффициент детерминации

Independent variable, x ₁ x ₂ harmful conditions		Dependent variable (y), length of work,	D	D ² vv %	P
Main factor (x ₁)	Confounder (x ₂)	equation $y = \alpha_0 - \alpha_1 x_1 - \alpha_2 x_2$, years	Rxy	К Лу, 70	
noise	vibration	y = 34.1 – 3.6x ₁ - 0.84x ₂ · years	0.84	71	0.027
vibration	labor severity	y = 34.1 – 3.8x ₁ - 1.02x ₂ . years	0.83	69	0.029
exposure to aerosoles	labor severity	labor severity		81	0.022
labor severity	cooling conditions	y = 36.3 - 4.5x ₁ - 1.7x ₂ . years	0.88	77	0.023
	roise vibration exposure to aerosoles	conditions Main factor (x ₁) Confounder (x ₂) noise vibration vibration labor severity exposure to aerosoles labor severity Cooling	conditions (y), length of work, equation y = α₀ - α₁x₁- α₂x₂, years noise vibration y = 34.1 - 3.6x₁- 0.84x₂ years vibration labor severity y = 34.1 - 3.8x₁- 1.02x₂ years vibration y = 34.1 - 3.8x₁- 1.02x₂ years exposure to aerosoles labor severity y = 37.4 - 3.8x₁- 2.1x₂ years roды labor severity y = 36.3 - 4.5x₁- 1.7x₂.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	conditions (y), length of work, equation y = α₀-α₀-α₁x₁- α₂x₂, years Rxy R²xy, % Main factor (x₁) Confounder (x₂) y = 34.1 - 3.6x₁-0.84x₂ years 0.84 71 vibration labor severity y = 34.1 - 3.8x₁-1.02x₂ years 0.83 69 exposure to aerosoles labor severity y = 37.4 - 3.8x₁-2.1x₂ years 0.90 81 labor severity y = 36.3 - 4.5x₁-1.7x₂ 0.88 77

Table 1. Length of work, harmful working conditions, and occupational diseases

R_{xy} – correlation coefficient R²xy – determination coefficient

Вероятность уменьшения стажа работников вследствие возникновения ПЗ при сочетанном воздействии основного и сопутствующего факторов производственной среды составляет 69...81 %.

Если бы у работников с установленными ПЗ условия труда были допустимые 2 класса, соответствующие требованиям гигиенических норм, то профессиональный стаж сохранялся до 34...37 лет.

Однако сочетанное действие шума с вибрацией, формирующее условия труда вредные 3 класса 1...4 степеней, может вызывать развитие нейросенсорной тугоухости через 16,4...23,7 года, сокращая профессиональный стаж работника на 4,4...17,6 лет соответственно.

Вибрационная болезнь при сочетанном действии вибрации и физических нагрузок (тяжесть труда) в зависимости от степени 3 класса условий труда может диагностироваться через 15...28 лет работы в профессии с уменьшением стажа работы в ней на 4,8...19,2 года.

Возникновение пылевых бронхитов, вызванных сочетанным действием фиброгенных аэрозолей и тяжестью труда, определяющей в свою очередь объем дыхания за смену, может в зависимости от степени 3 класса условий труда наступать при стаже работника 14...31 год.

Сочетанное действие физических нагрузок, определяющих тяжесть труда, с охлаждающим микроклиматом, создающее условия труда 3 класса 1...4 степеней, может вызывать возникновения болезней опорно-двигательного аппарата через 12...30 лет, уменьшая профессиональный стаж на 6,2...20 лет.

Учитывая то, что за последние 5 лет в КО средневзвешенное значение класса условий труда, при которых возникали ПЗ, расценено как 3 класс 2 степени определялись профессиональный стаж и его потери у работников при возникновении нейросенсорной тугоухости, вибрационной болезни, пылевых бронхитов и болезней опорно-двигательного аппарата.

При условиях труда 3 класса 2 степени ПЗ диагнастируются при стаже работников 23,9...25,6 года, а работу в профессии им приходится прекращать раньше на 8,9...12,4 года (таблица 2).

В КО ежегодно выявляется 1050...1200 случаев ПЗ, структура возникновения которых по классу условий труда представлена на **рисунке 1**. Как следствие, среди работников могут терять в профессиональном стаже 17 % - 4,4...6,2 года, 63 % - 8,8...12,4 года, 19 % - 13,2...18,6 года и 1 % - 17,6...24,8 года.

Таблица 2. Стаж работников и его прекращение в профессии при возникновении профессиональных заболеваний, вызванных условиями труда 3 класса 2 степени

Occupational disease	Independent variable, x ₁ x ₂ harmful conditions		Dependent variable (y), length of work,	R _{xv}	R²xy, %	P
	Main factor (x ₁)	Confounder (x ₂)	equation y = α₀ - α₁x₁- α₂x₂, years	ICxy	IC Ay, 70	
Sensorineural hearing loss	noise	vibration	y = 34.1 – 3.6x ₁ - 0.84x ₂ · years	0.84	71	0.027
Vibration disease	vibration	labor severity	y = 34.1 – 3.8x ₁ - 1.02x ₂ . years	0.83	69	0.029
Dust bronchitis	exposure to aerosoles	labor severity	y = 37.4 – 3.8x ₁ - 2.1x ₂ . years годы	0.90	81	0.022
Musculoskeletal system disorders	labor severity	cooling conditions	y = 36.3 - 4.5x ₁ - 1.7x ₂ . years	0.88	77	0.023

R_{xy} – correlation coefficient R²xy – determination coefficient

Table 2. Length of work and premature retirement in patients with occupational diseases caused by harmful working conditions

Occupational disease	Length of work at onset of occupational disease	Premature retirement, years		
Sensorineural hearing loss	25.2	8.9		
Vibration disease	24.5	9.6		
Dust bronchitis	25.6	11.8		
Musculoskeletal system disorders	23.9	12.4		

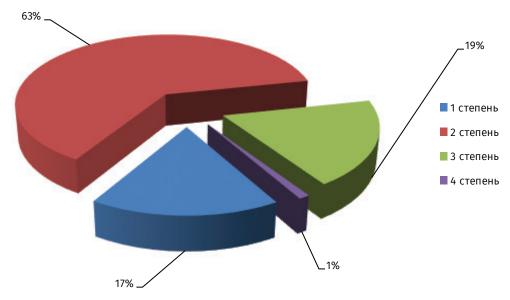


Рисунок 1. Профессиональные заболевания, возникающие в зависимости от степени 3 класса условий труда

Figure 1. Occupational diseases occurring in harmful working conditions

Заключение

Установлены количественные зависимости, описываемые уравнениями линейной регрессии, стажа работников при возникновении наиболее распространенных ПЗ в КО от степени З класса условий труда. С вероятностью 69...81% стаж работников при развитии нейросенсорной тугоухости, вибрационной болезни, пылевых бронхитов, болезней опор-

но-двигательного аппарата может составлять при условии труда 3 класса 1...4 степеней 12...30 лет соответственно, потери его вследствие преждевременного оставления профессиональной деятельности 5...20 лет. Полученные данные целесообразно учитывать как при постановке диагноза ПЗ, так и при санитарно-эпидемиологическом расследовании случая ПЗ.

Литература / References:

- 1. Evaluation of the effect of environmental factors on the health of the population of Kemerovo oblast: Information- analytical review. Kemerovo: Kuzbassvuzizdat, 2016. 163 р. (Оценка влияния факторов среды обитания на здоровье населения Кемеровской области: Информационно-аналитический обзор. Кемерово: Кузбассвузиздат, 2016. 163 с.).
- 2. Evaluation of the effect of environmental factors on the health of the population of Kemerovo oblast: Information- analytical review. Kemerovo: Kuzbassvuzizdat, 2015. 152 р. (Оценка влияния факторов среды обитания на здоровье населения Кемеровской области: Информационно-аналитический обзор. Кемерово: Кузбассвузиздат, 2015. 152 с.).
- 3. Evaluation of the effect of environmental factors on the health of the population of Kemerovo oblast: Information- analytical review. Kemerovo: Kuzbassvuzizdat, 2013. 184 р. (Оценка влияния факторов среды обитания на здоровье населения Кемеровской области: Информационно-аналитический обзор. Кемерово: Кузбассвузиздат, 2013. 184 с.).
- 4. Mikhayluts AP, Ivanova AN, Kurakin VA. Computer modeling of sanitary and epidemiological situation with a professional incidence in Kemerovo region // Actual problems of occupational hygiene and human ecology: materials of the XLV scientific.-pract. Conf. with int. participation "Hygiene, health organization and occupational pathology". Novokuznetsk, 2010. P. 56-59. Russian (Михайлуц А.П., Иванова А.Н., Куракин В.А. Компьютерное моделирование санитарно-эпидемиологической обстановки с профессиональной заболеваемостью в Кемеровской области // Актуальные вопросы профпатологии гигиены и экологии человека: материалы XLV науч.-практ. конф. с междунар. участием «Гигиена, организация здравоохранения и профпатология». Новокузнецк, 2010. С. 56-59).
- 5. Oks EI, Kurakin VA, Abashkin AO. Assessment of working conditions and calculation of permissible (safe) work experience of major worker groups in Kuzbass mining. Occupational Medicine and Human Ecology. 2015; (3): 147-150. Russian (Окс Е.И., Куракин В.А., Абашкин А.О. Оценка условий труда и расчет допустимого (безопасного) стажа основных профессий угольных шахт Кузбасса // Медицина труда и экология человека. 2015. № 3. С. 147-150).
- 6. Oleshchenko AM, Zakharenkov VV, Surzhikov DV, Kislicina VV, Korsakova TG. Evaluation of health risk in industrial workers. Occupational Medicine and Industrial Ecology. 2016; (5): 36-39. Russian (Олещенко А.М., Захаренков В.В., Суржиков Д.В., Кислицина В.В., Корсакова Т.Г. Оценка риска нарушения здоровья работников промышленных предприятий // Медицина труда и промышленная экология. 2016. №5. С. 36-39).

Сведения об авторах

Михайлуц Анатолий Павлович, доктор медицинских наук, профессор кафедры гигиены ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия. Вклад в статью: разработка дизайна исследования, оценка риска.

Сувидова Татьяна Анатольевна, заведующая отделением гигиены и физиологии труда ФБУЗ «Центр гигиены и эпидемиологии в Кемеровской области», Кемерово, Россия.

Вклад в статью: разработка дизайна исследования, сбор и обработка данных, написание статьи.

Authors

Prof. Anatoly P. Mikhayluts, MD, PhD, Professor, Department of Hygiene, Kemerovo State Medical University, Kemerovo, Russian Federation **Contribution:** conceived and designed the study; performed the risk assessment.

Dr. Tatiana A. Suvidova, MD, Head of the Department for Labor Hygiene and Physiology, Kemerovo Region Center for Hygiene and Epidemiology, Kemerovo, Russian Federation

Contribution: conceived and designed the study; collected and processed the data; wrote the manuscript.

Acknowledgements: There was no funding for this article.

Корреспонденцию адресовать:

Сувидова Татьяна Анатольевна 650002, г. Кемерово, пр. Шахтеров, 20 E-mail: tsuvid75@mail.ru

Corresponding author:

Dr. Tatiana A. Suvidova, Prospekt Shakhterov 20, Kemerovo, 650002, Russian Federation E-mail: tsuvid75@mail.ru

Статья поступила: 10.02.17г.Принята в печать: 20.02.17г.