

https://doi.org/10.23946/2500-0764-2022-7-2-94-101

АНАЛИЗ ГЕНОМОВ COXIELLA BURNETII ПРИ ИЗУЧЕНИИ ЭПИДЕМИИ ЛИХОРАДКИ КУ

ШПЫНОВ С.Н.^{1,2},* РУДАКОВ Н.В.^{1,2}, ЗЕЛИКМАН С.Ю.^{1,2}, ТРАНКВИЛЕВСКИЙ Д.В.³

¹ФБУН «Омский НИИ природно-очаговых инфекций» Роспотребнадзора, г. Омск, Россия ²ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России, г. Омск, Россия ³ФБУЗ «Федеральный центр гигиены и эпидемиологии» Роспотребнадзора, г. Москва, Россия

Резюме

Лихорадка Ку – зоонозная инфекция, вызываемая Coxiella burnetii. Основными источниками заражения человека является больной скот (козы, овцы и коровы), сырье и мясомолочное продукты переработки, предметы ухода за животными и другие объекты, инфицированные коксиеллами. Особое значение при лихорадке Ку, с учетом высокой устойчивости возбудителя, имеет «пылевая инфекция». C. burnetii считается агентом биологического оружия, применение его в виде аэрозоля вызывает острые заболевания с дальнейшей инвалидизацией. Хронизация инфекции может вызывать эндокардит, приводящий к фатальным последствиям, или синдрому хронической усталости. В Нидерландах с 2007 по 2010 гг. был выявлен высокий рост заболеваемости лихорадкой Ку у людей (более 4000 случаев острой формы). Большинство случаев заболевания было связано с козьими фермами. Анализ десяти полноразмерных аннотированных геномов штаммов C. burnetii позволил провести молекулярно-эпидемиологический скрининг кодирующих и некодирующих структур этих геномов с целью изучить возможное происхождение штаммов, вызвавших заболевания. Использование формального анализа строя помогло более углубленно проанализировать геномы штаммов коксиелл и дифференцировать их на шесть групп. Было показано, что штаммы Z3055 (абортированная плацента овцы, Германия) и NL3262 (абортированная плацента козы, Нидерланды) являются наиболее близкими и содержат 84,9% компонентов хромосом с полной гомологией. Ведущим мотивом в реорганизации генома C. burnetii является адаптация штамма этого микроорганизма к «новому» виду хозяина. Самая крупная из известных эпидемий лихорадки Ку могла произойти при снижении качества ветеринарного надзора, в результате чего возникли условия для реализации эпизоотологического процесса, что способствовало появлению очагов коксиеллёза с дальнейшей реализацией эпидемического процесса в отношении персонала, обслуживающего фермы по производству козьего сыра. Переход «овечьего» (Z3055-подобного) штамма к «козьему» (NL3262) при «смене» хозяина в результате эпизоотологического процесса мог поспособствовать осложнению эпидемической ситуации при лихорад-

Ключевые слова: лихорадка Ky, *Coxiella burnetii*, геном, эпидемия, биологическое оружие, мелкий рогатый скот.

Конфликт интересов

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования

Собственные средства.

Для цитирования:

Шпынов С.Н., Рудаков Н.В., Зеликман С.Ю., Транквилевский Д.В. Анализ геномов *Coxiella burnetii* при изучении эпидемии лихорадки Ку. *Фундаментальная и клиническая медицина*. 2022;7(2): 94-101. https://doi.org/10.23946/2500-0764-2022-7-2-94-101

*Корреспонденцию адресовать:

Шпынов Станислав Николаевич, 644080, Россия, г. Омск, пр-т Мира, д. 7. E-mail: stan63@inbox.ru © Шпынов С.Н. и др.

REVIEW ARTICLES

ANALYSIS OF COXIELLA BURNETII GENOMES IN CONTEXT OF EPIDEMIC Q FEVER

STANISLAV N. SHPYNOV^{1,2},* NIKOLAY V. RUDAKOV^{1,2}, SVETLANA YU. ZELIKMAN^{1,2}, DMITRIY V. TRANKVILEVSKIY ³

- ¹Omsk Research Institute of Natural Focal Infections, Omsk, Russian Federation
- ²Omsk State Medical University, Omsk, Russian Federation
- ³Federal Hygiene and Epidemiology Center, Moscow, Russian Federation

Abstract

Q fever is a zoonotic infection caused by Coxiella burnetii. Infected goats, sheep and cattle, materials of animal origin, meat and dairy products are the main sources of *C. burnetii* for humans. Dust *C.* burnetii infection is of particular importance due to the high resistance of this pathogen. C. burnetii is considered as a biological weapon and its use as an aerosol causes acute diseases with further disability. Chronic C. burnetii infection can cause endocarditis, leading to a chronic fatigue syndrome or even death. In the Netherlands, a pronounced increase in the incidence of Q fever in humans was detected from 2007 to 2010 (\geq 4,000 acute cases), mostly associated with goat farms. Analysis of 10 C. burnetii genomes allowed molecular epidemiology screening of coding and non-coding structures for studding the possible origin of the outbreak strains. Strains Z3055 (sheep placenta, Germany) and NL3262 (goat placenta, Netherlands) are the most closely related (84.9% homologous sequence). Formal order analysis distinguished 6 groups of *C. burnetii* strains. Adaptation to a new host emerged as a driving force for the reorganization of *C. burnetii* genome. The largest epidemic of Q fever could occur because of an inadequate veterinary supervision that led to the epizootic and further epidemic in the farmers producing the goat cheese. The transition of the «sheep» (Z3055-like) strain to the «goat» (NL3262) strains, characterised by a change of the host during the epizootic, could significantly contribute to the severity of that Q fever epidemic.

Keywords: Q fever, *Coxiella burnetii*, genome, epidemic, biological weapon, small cattle.

Conflict of Interest

None declared.

Funding

There was no funding for this project.

For citation:

Stanislav N. Shpynov, Nikolay V. Rudakov, Svetlana Yu. Zelikman, Dmitriy V. Trankvilevskiy. Analysis of Coxiella burnetii genomes in context of epidemic Q fever. Fundamental and Clinical Medicine. (In Russ.).2022;7(2): 94-101. https://doi.org/10.23946/2500-0764-2022-7-2-94-101

*Corresponding author:

Dr. Stanislav N. Shpynov, 7, Mira Prospekt, Omsk, 644080, Russian Federation, E-mail: stan63@inbox.ru ©Stanislav N. Shpynov, et al.

Лихорадка Ку (Q лихорадка, коксиеллёз) – вызываемый *Coxiella burnetii* зооноз с длительным и самостоятельным существованием внутри стадных очагов сельскохозяйственных животных, присутствием на части территорий смешанных природно-хозяйственных (антропоургических) очагов. Для этой инфекции характерны различные механизмы и пути передачи возбудителя, полиморфная симптоматика, ретикулоэндотелиоз, клинически сопровождающийся интоксикацией и лихорадкой. Первичные природные очаги коксиеллёза в настоящее время отсутствуют практически на всей терри-

тории Российской Федерации [1].

Как правило, источниками коксиелл служат козы, овцы и крупный рогатый скот (КРС). Возможно заражение от других видов животных: лошадей, верблюдов, яков, собак, кошек, пушных животных в звероводческих хозяйствах и птицы в птицеводческих хозяйствах [1,2]. Козы, овцы и КРС – важнейший резервуар *С. burnetii*, при этом штаммы коксиелл изолированы от общирного круга членистоногих и диких позвоночных (таблица 1). В редких, казуистических случаях больной человек может быть источником инфекции.

Таблица 1.

Характеристики геномов штаммов Coxiella burnetiid

Table 1.

Genomic characterisation of C. burnetii strains

Штаммы коксиелл C. burnetii strains	Материал выделения Клад Source Clade	Homep B GenBank GenBank accession number	Размер хромосомы (п.н.) Chromosome size (bp)	GC%	Количество генов Number of genes		змида smid Размер (п.н.) Size (bp)
NL3262	Коза/1а Goat	NZ_CP013667.1	2093477	42,84	2401	QpH1	37320
CbRSA331	Человек/2 Human	NC_010117.1	2016427	42,74	2272	QpH1	37317
CbuG_Q212	Человек/3 Human	NC_011527.1	2008870	42,60	2208	Интегрированная Integrated	
Nine Mile (NMRSA493) (phase I)	Клещ Dermacentor andersonii/2 Tick	NC_002971.4	1995281	42,64	2085	QpH1	37319
Z3055	Овца/1/2 Sheep	NZ_LK937696.1	1995463	42,60	2197	QpH1	
NMRSA 439 (phase II)	Культура клеток/2 Cell culture	NZ_CP020616.1	1969224	42,64	2217	pQpH1	37319
NMRSA439 (phase II, clone 4)	Человек/2 Human	NZ_CP018005.1	1969245	42,64	2219	pQpH1	37,319
MSU Goat Q177	Коза/* Goat	NZ_CP018150.1	2090565	42,64	2305	QpRS	39281
CbuK_Q154	Человек/* Human	NC_011528.1	2063100	42,64	2302	QpRS	39280
Dugway 5J108-111	Грызуны Dipodomys ordii/* Rodents	NC_009727.1	2158758	42,34	2358	QpDG	54179

Примечание: *некластеризованные штаммы, представляющие разные генотипы [3].

*unclustered strains representing different genotypes [3].

С применением филогенетического анализа было выделено четыре клада *C. burnetii* [3]. Генотип CbNL01 был сформирован кладами 1a и 1b; клад 2 был представлен генотипом CbNL12 и Nine Mile-подобным генотипом (NM, RSA331 и др.), в этот генотип также включён штамм Z3055 (равноудалённый для кладов 1 и 2); клад 3 представлен Scurry-генотипом (бесплазмидные штаммы: CbuG_Q212); отдельно были выделены некластеризованные штаммы разных генотипов (Shperling, Dugway 5J108-111, CbuK_Q154, MSU Goat Q177, и др.). Штаммы коксиелл, отнесённые к указанных генетическим типам, с различной эффективностью осуществляют заражение разных видов хозяев. Представители генотипа CbNL01, как правило, изолируются от человека и коз, тогда как носители генотипа CbNL12 выделяются от крупного рогатого скота и очень редко от человека и коз [4-6]. Данное обстоятельство демонстрирует более высокую восприимчивость человека и коз к штаммам, представляющим генотип CbNL01.

При заражении человека первостепенную важность имеют аспирационный (в очагах мелкого рогатого скота – MPC) и контактный пути передачи, меньшую степень значимости – али-

ментарный путь передачи, который более характерен для очагов крупного рогатого скота [1,2]. «Пылевая инфекция» имеет важнейшее значение при лихорадке Ку с учетом высокой устойчивости коксиелл к факторам окружающей среды. Факторами передачи коксиелл человеку от зараженного животного служат сырье животного происхождения (шерсть, пух, шкуры), мясомолочные продукты, предметы ухода за животными, экскременты и другие объекты, инфицированные C. burnetii (рисунок 1). Трансмиссивный путь передачи является редким и маловероятным. При осложнении эпизоотической ситуации возрастает опасность возникновения эпидемии – комплекса не зависящих друг от друга, одиночных или групповых случаев инфицирования людей от животных или контаминированных возбудителем объектов внешней среды [7,8].

С. burnetii относится к агентам биологического оружия [9–11]. Лихорадка Ку может не приводить к высокой смертности непосредственно после применения С. burnetii в качестве аэрозольного биологического оружия, но вызывает острые заболевания, приводящие к дальнейшей инвалидизации. Хронизация инфекции может осложняться эндокардитом, приводящим к фатальным по-

следствиям или синдром хронической усталости. Диагностика лихорадки Ку осложнена из-за неспецифических проявлений, эффективное лечение антибиотиками возможно только при острой форме инфекции. В случае биотерроризма эффективны вакцинация и химиопрофилактика [9].

Наиболее важным фактором передачи *С. burnetii* при акте биотерроризма является аэрозоль, кроме этого, для заражения человека может использоваться контаминированное почтовое отправление, контаминированные продукты питания и вода. Заражение *С. burnetii* в результате акта биотерроризма характеризуется хронической формой инфекции с развитием эндокардита [9].

При работе с культурой *C. burnetii* в лабораторных условиях особое внимание следует уделять технике безопасности, учитывая высокую устойчивость микроорганизма к физическим и химическим дезинфицирующим средствам и мельчайшим размерам бактериальной клетки, проходящей через большинство фильтров. Первый описанный случай внутрилабораторного заражения C. burnetii произошёл в США (Rocky Mountain Laboratories, Hamilton) в 1938 году, когда заразился директор Национального института здравоохранения Rolla Eugene Dyer [12]. При работе с выделенным от него штаммом RSA439 (таблица 1) в Национальном институте здравоохранения (Notional Institute of Health, Washington) произошло заражение 14 сотрудников лаборатории в 1940 году. Считается, что в США в 1938–1950 гг. внутрилабораторно лихорадкой Ку заразилось около 100 сотрудников, при этом часть случаев не была зарегистрирована [13].

Во время эпидемии лихорадки Ку в 2007-2010 гг. среди жителей Голландии было выявлено более четырёх тысяч случаев этой инфекции в острой форме [14]. Большинство случаев было связанно с козьими фермами и предприятиями по производству козьего сыра, источником инфекции послужили козы и продукция козьих молочных ферм. Впоследствии было установлено, что заражение C. burnetii могло происходить при помощи аэрозоля. Было выявлено, что риск заражения жителей находящихся на удалении до одного километра по отношению к розе ветров от козьих ферм был в сорок шесть раз выше, чем на дистанции пять - десять километров [15]. Во время этой вспышки штамм *C. burnetii* (NL3262) был изолирован из плаценты козы при аборте коксиеллёзной этиологии [16]. Штаммы коксиелл, изолированные в Нидерландах, и штамм Z3055, выделенный из плаценты овцы во время коксиеллёзного аборта в Германии (1992 год), являются клональными [17]. Результаты мультилокусного секвенирования-типирования показали, что указанные штаммы коксиелл содержат один VNTR-профиль, один генотип MST33, а также плазмиду типа QpH1. Использование MLVA (Multiple Locus Variable-number Tandem Repeat) продемонстрировало превалирующее содержание генотипа CbNL01 и в значительно меньшей

Рисунок 1.

Материалы, подлежащие исследованию, с учетом путей и факторов передачи Coxiella burnetii в очагах сельскохозяйственных животных (антропоургических), природных очагах и при акте биотерроризма

Figure 1.

Materials considering routes and factors of C. burnetii transmission in livestock foci, natural foci and in bioterrorism cases

степени CbNL12 у штаммов из Голландии [18].

Штаммы, изолированные во время эпидемии лихорадки Ку в Нидерландах от человека (NL-Limburg, NLhu3345937, 42785537) и эпизоотических проявлениях от козы (CbCVIC1, NL3262, 602) продемонстрировали очень высокое сходство геномов. Все они образовали один кластер и на основании результатов филогенетического анализа и изучения однонуклеотидного полиморфизма были отнесены к единому генотипу CbNL01. Таким образом, было подтверждено, что козы и связанные с ними продукты, получаемые на козьих молочных фермах по производству сыра, являются источниками *C. burnetii* для человека в этой стране, что было предварительно показано при помощи генотипирования [10]. Различие между геномами штаммов NL-Limburg и NL3262 составляет только восемь точечных мутаций, что демонстрирует их клональность [3]. Их геномы содержат только одну ДНК-перегруппировку и обладают наибольшим количеством генов, которые кодируют транспозазу.

С целью изучения происхождения штаммов *С. burnetii*, вызвавших массовую заболеваемость лихорадкой Ку в Нидерландах в 2007–2010 гг., и для определения их эпидемической значимости был применен комплексный подход, основанный на использовании нового биоинформационного метода — формального анализа строя [19,20].

Для выполнения биоинформационного анализа с применением программ «карты генов» и «матрицы сходства» [20] и дальнейшего изучения референтной последовательности геномов десяти штаммов и восьми плазмид *C. burnetii* (таблица 1) были получены в режиме свободного доступа из базы данных GenBank: www.ncbi.nlm.nih.gov/genome.

Использование программы «матрица сходства» позволило дифференцировать все изучаемые штаммы *C. burnetii* на шесть групп:

- штаммы Z3055 и NL3262 (генотип CbNL01), с 84,9% компонентов хромосом, имеющих 100% гомологию (в 1,8–7,0 раз больше, чем у других штаммов), характеризующиеся содержанием наибольшего количества копий генов, кодирующих транспозазу IS110, и различающиеся по структуре хромосом (клад 1а и 1b);
- штамм RSA 493 NMI (генотип CbNL12) вместе с двумя клонами (RSA439 clone 4 NMII и RSA 439 NMII), имеющими выраженный процент компонентов хромосом (86,89% и 85,56% соответственно) со 100% гомологией, их хромосомы

по своему строению наиболее близки к штамму Z3055 (клад 2). Расположение по этим двум группам (1 и 2) согласуется с равноудалённой позицией штамма Z3055, по данным Kuley с соавт. [3];

- штамм RSA 331, находящийся на равном удалении по проценту компонентов хромосом с абсолютной гомологией по отношению к первой группе штаммов: NL3262 (47,14%), Z3055 (46,15%), второй группе: RSA439 clone 4 (37,33%), RSA 439 (36,84%), RSA 493 (36,05%), а также плазмид штаммов этих двух групп (34,48-50,0%), и по строению хромосомы располагается близко к штамму NL3262 (клад 2);
- штамм CbuG_Q212 (генотип Scurry) не имеющий плазмиду, с незначительным процентом компонентов со 100% гомологией по отношению к хромосомам других штаммов C. burnetii 13-19,05% (клад 3);
- штаммы «MSU Goat Q177» и CbuK_Q154, имеющие значительный процент компонентов со 100% гомологией хромосом (76,55%) и максимальный по нуклеотидным последовательностям плазмид QpRS (95,75%), при этом данные штаммы имеют низкий процент гомологии по отношению к хромосомам (12,06-22,2%) и плазмидам (6,74-10,87%) остальных геномов, это может указывать на общность их происхождения, отдалённую по отношению к другим штаммам (некластеризованные штаммы разных генотипов);
- штамм Dugway 5J108-111, характеризующийся незначительным процентом кодирующих и некодирующих генов хромосомы со 100% гомологией при сравнении с хромосомами остальных штаммов (17,15-22,2%) и плазмиде pQpDG (5,56-8,93%) (некластеризованные штаммы разных генотипов).

Штаммы Z3055 и NL3262, выделенные от овцы и козы соответственно, показали возможную близость происхождения, что подтверждается значительной долей (84,9%) кодирующих и некодирующих генов в их хромосомах, имеющих абсолютную гомологию. «Смена» вида хозяина могла привести к изменениям в структуре хромосом этих штаммов, что привело к значительной коллинеарной перегруппировке, вызвавшей резкое увеличение количества инсерционных элементов, и могло поспособствовать росту вирулентности. На возможную близость происхождения может указывать также наличие у обоих штаммов одного типа плазмиды (QpH1).

Штаммы, для которых показана клональность происхождения, включая оригинальный Nine Mile (NMRSA493, phase I), изолирован-

ный из иксодовых клещей D. andersonii (Табл.), штамм NMRSA 439 (phase II), полученный путём заражения культуры клеток, и штамм NMR-SA439 (phase II, clone 4), выделенный от пациента в результате внутрилабораторного заражения, продемонстрировали перестройку геномов [20]. Реорганизация геномов произошла в процессе перехода культуры коксиелл на культуру клеток и к человеку, что способствовало трансформации фазового состояния C. burnetii из фазы I в фазу II. Этот процесс продемонстрировал очень близкий процент компонентов хромосом, содержащих 100% гомологию (85,56-86,89%). Перестройку геномов можно рассматривать как адаптационный процесс микроорганизма в связи со сменой экологической ниши.

Снижение требований к обеспечению ветеринарно-санитарного контроля могло поспособствовать формированию условий для развития эпизоотического процесса и формированию очагов лихорадки Ку на козьих фермах. В дальнейшем это могло вызвать эпидемию среди рабочих ферм по производству козьего сыра. Возможно, эффективность эпизоотии была обусловлена сменой хозяина (экологической ниши) C. burnetii. Произошёл переход «овечьего» Z3055-подобного штамма к «козьему» -NL3262. Дальнейший механизм формирования эпидемически значимых штаммов (NL-Limburg, 42785537, NLhu3345937) С. burnetii был связан со значительным увеличением количества копий IS110, повлиявшем на рост вирулентности, при сохранении высокого процента компонентов хромосом со 100% гомологией. С учётом клональности штаммов NL3262 и NL-Limburg, выделенных во время подъема заболеваемости лихорадкой Ку в Нидерландах, при аналогии с высоким процентом полностью гомологичных компонентов хромосом и плазмид штаммов «MSU Goat Q177» и K_Q154, также изолированных от козы и человека, показана важная роль коз в эпидемиологии этой инфекции.

На массовость проявления эпидемического процесса в данном случае повлияла высокая эффективность заражения жителей, проживающих в радиусе одного километра по розе ветров от козьих молочных ферм, при реализации аэрогенного механизма передачи возбудителя.

Таким образом, впервые с помощью изучения полноразмерных геномов *С. burnetii*, а не комплекса генов, фрагментов геномов или их конкатенированных конструкций, удалось продемонстрировать, что штамм Z3055, изолирован-

ный из плаценты овцы при коксиеллёзном аборте (Германия, 1992), приходится самым близким по геномным и генотипическим характеристикам, среди изученных, со штаммом NL3262, изолированном из абортированной плаценты козы коксиеллёзной этиологии (Нидерланды, 2009).

С помощью недавно разработанного в России инновационного биоинформационного подхода для анализа и сравнения геномов *C. burnetii*, а также *Rickettsia* spp. [21] — формального анализа строя, благодаря более тонкой дифференциации строения геномов удалось выделить шесть групп штаммов *C. burnetii*.

На основании данных проведенного анализа было сделано предположение о возможном происхождении штаммов, усугубивших эпидемическую ситуацию по лихорадке Ку в Нидерландах в период с 2007 по 2010 гг. Было продемонстрировано, что основной причиной для реорганизации генома *C. burnetii* стала адаптация патогена к организму «нового» хозяина-теплокровного.

Комплексное применение классических риккетсиологических методов традиционно используемых для выделения штаммов коксиелл с последующим изучением фенотипических характеристик является основой для проведения исследований вместе с получением генотипических характеристик. В то же время «форсированное» развитие технологий полногеномного секвенирования совместно с разработкой программных продуктов для «сборки» и аннотирования геномов высокого качества, а также применение новых биоинформационных подходов являются мощным ресурсом не только для углублённого изучения их свойств, но и для прогностического моделирования фенотипических признаков in silico в случае с трудно культивируемыми (не культивируемыми в лабораторных условиях) микроорганизмами.

Использование новых технологий позволит осуществлять углублённый молекулярно-эпидемиологический скрининг штаммов *C.* burnetii в антропоургических и природных очагах лихорадки Ку, так же как в образцах клинического материала от людей.

Необходимо проведение ретроспективного изучения (молекулярный скрининг) геномов штаммов коксиелл, выделенных от человека, животных, из других источников, а также штаммов (изолятов), хранящихся в коллекциях бактериальных культур для поиска кандидатов в вакцинные штаммы и при создании рекомбинантных вакцин.

Литература:

- Рудаков Н.В., Егембердиева Р.А., Дуйсенова А.К., Сейдулаева Л.Б. Клещевые трансмиссивные инфекции человека. Омск: ООО ИЦ «Омский научный вестник»; 2016.
- Рудаков Н.В., Фетисова Н.Ф., Сыскова Т.Г. Коксиеллез в Российской Федерации. Здоровье населения и среда обитания – ЗНИСО. 1994;2:10-12.
- Kuley R, Kuijt E, Smits MA, Roest HIJ, Smith HE, Bossers A. Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains. Front Microbiol. 2017;8:1526. https://doi.org/ 10.3389/ fmicb.2017.01526
- Mori M, Boarbi S, Michel P, Bakinahe R, Rits K, Wattiau P, Fretin D. In vitro and in vivo infectious potential of coxiella burnetii: a study on Belgian livestock isolates. *PLoS One*. 2013;8(6):e67622. https://doi. org/10.1371/journal.pone.0067622
- Roest HI, Ruuls RC, Tilburg JJ, Nabuurs-Franssen MH, Klaassen CH, Vellema P, van den Brom R, Dercksen D, Wouda W, Spierenburg MA, van der Spek AN, Buijs R, de Boer AG, Willemsen PT, van Zijderveld FG. Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. *Emerg Infect Dis.* 2011;17(4):668-675. https://doi.org/10.3201/eid1704.101562
- Tilburg JJ, Roest HJ, Buffet S, Nabuurs-Franssen MH, Horrevorts AM, Raoult D, Klaassen CH. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. *Emerg Infect Dis*. 2012;18(5):887-889. https://doi.org/10.3201/eid1805.111907
- 7. Кучерук В.В. Природная очаговость инфекций основные термины и понятия. В кн.: *Избранные труды по природной очаговости болезней*. Москва: РУСАКИ; 2006:272-281.
- 8. Дайтер А.Б., Рыбакова Н.А., Токаревич Н.К., Самитова В.И., Лимин Б.В. Эпидемиологическая проекция внутристадных очагов лихорадки Ку. Журнал микробиологии, эпидемиологии и иммунобиологии. 1988:65(11):51-56.
- Madariaga MG, Rezai K, Trenholme GM, Weinstein RA. Q fever: a biological weapon in your backyard. *Lancet Infect Dis*. 2003;3(11):709-721. https://doi.org/10.1016/s1473-3099(03)00804-1.
- Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518-553. https://doi.org/10.1128/CMR.12.4.518
- Tissot-Dupont H, Raoult D. Q fever. *Infect Dis Clin North Am*. 2008;22(3):505-514. https://doi.org/10.1016/j.idc.2008.03.002
- Davis GE, Cox HR. A filter-passing Infectious Agent isolated from Ticks. I. Isolation from Dermacentor andersoni, Reactions in Animals,

- and Filtration Experiments. Public Health Reports. 1938;53:2259.
- Здродовский П.Ф., Голиневич Е.М. Учение о риккетсиях и риккетсиозах. Москва: Медицина; 1972.
- 14. Kuley R, Smith HE, Janse I, Harders FL, Baas F, Schijlen E, Nabuurs-Franssen MH, Smits MA, Roest HI, Bossers A. First Complete Genome Sequence of the Dutch Veterinary Coxiella burnetii Strain NL3262, Originating from the Largest Global Q Fever Outbreak, and Draft Genome Sequence of Its Epidemiologically Linked Chronic Human Isolate NLhu3345937. *Genome Announc*. 2016;4(2):e00245. https://doi.org/ 16. 10.1128/genomeA.00245-16
- Ladbury GA, Van Leuken JP, Swart A, Vellema P, Schimmer B, Ter Schegget R, Van der Hoek W. Integrating interdisciplinary methodologies for One Health: goat farm re-implicated as the probable source of an urban Q fever outbreak, the Netherlands, 2009. BMC Infect Dis. 2015;15:372. https://doi.org/10.1186/s12879-015-1083-9
- Roest HJ, van Gelderen B, Dinkla A, Frangoulidis D, van Zijderveld F, Rebel J, van Keulen L. Q fever in pregnant goats: pathogenesis and excretion of Coxiella burnetii. *PLoS One*. 2012;7(11):e48949. https:// doi.org/10.1371/journal.pone.0048949
- D'Amato F, Rouli L, Edouard S, Tyczka J, Million M, Robert C, Nguyen TT, Raoult D. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. *Comp Immunol Microbiol Infect Dis.* 2014;37(5-6):281-288. https://doi.org/10.1016/j. cimid.2014.08.003
- Kuley R, Smith HE, Frangoulidis D, Smits MA, Jan Roest HI, Bossers A. Cell-free propagation of Coxiella burnetii does not affect its relative virulence. *PLoS One.* 2015;10(3):e0121661. https://doi.org/10.1371/journal.pone.0121661
- Гуменюк А.С., Поздниченко Н.Н., Родионов И.Н., Шпынов С.Н. О средствах формального анализа строя нуклеотидных цепей. Математическая биология и биоинформатика. 2013;8(1):373-397. https://doi.org/10.17537/2013.8.373
- Shpynov SN, Tarasevich IV, Skiba AA, Pozdnichenko NN, Gumenuk AS. Comparison of genomes of *Coxiella burnetii* strains using formal order analysis. *New Microbes New Infect*. 2018;23:86-92. https://doi. org/10.1016/j.nmni.2018.02.011
- Fournier P-E. European Society for Coxiellosis, Chlamydioses, Anaplasmoses and Rickettsioses American Society for Rickettsiology joint meeting 2017. New Microbes New Infect. 2018;23:6. https://doi.org/10.1016/j.nmni.2018.02.001.

References

- Rudakov NV, Egemberdieva RA, Duysenova AK, Seydulaeva LB. Kleshchevye transmissivnye infektsii cheloveka. Omsk: OOO ITs Omskiy nauchnyy vestnik; 2016. (In Russ).
- Rudakov NV, Fetisova NF, Syskova TG. Koksiellez v Rossiyskoy Federatsii. Public Health and Life Environment - PH&LE. 1994;2:10-12. (In Russ).
- Kuley R, Kuijt E, Smits MA, Roest HIJ, Smith HE, Bossers A. Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains. Front Microbiol. 2017;8:1526. https://doi.org/ 10.3389/fmicb.2017.01526
- Mori M, Boarbi S, Michel P, Bakinahe R, Rits K, Wattiau P, Fretin D. In vitro and in vivo infectious potential of coxiella burnetii: a study on Belgian livestock isolates. *PLoS One*. 2013;8(6):e67622. https://doi. org/10.1371/journal.pone.0067622
- Roest HI, Ruuls RC, Tilburg JJ, Nabuurs-Franssen MH, Klaassen CH, Vellema P, van den Brom R, Dercksen D, Wouda W, Spierenburg MA, van der Spek AN, Buijs R, de Boer AG, Willemsen PT, van Zijderveld FG. Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. *Emerg Infect Dis.* 2011;17(4):668-675. https://doi.org/ 10.3201/eid1704.101562
- Tilburg JJ, Roest HJ, Buffet S, Nabuurs-Franssen MH, Horrevorts AM, Raoult D, Klaassen CH. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. *Emerg Infect Dis*. 2012;18(5):887-889. https://doi.org/10.3201/eid1805.111907

- Kucheruk VV. Prirodnaya ochagovost' infektsiy osnovnye terminy i ponyatiya. In: *Izbrannye trudy po prirodnoy ochagovosti bolezney*. Moscow: RUSAKI; 2006:272-281. (In Russ).
- Dayter AB, Rybakova NA, Tokarevich NK, Samitova VI, Limin BV. Epidemiologicheskaya proektsiya vnutristadnykh ochagov likhoradki Ku. *Journal of Microbiology, Epidemiology and Immunobiology*. 1988:65(11):51-56. (In Russ).
- Madariaga MG, Rezai K, Trenholme GM, Weinstein RA. Q fever: a biological weapon in your backyard. *Lancet Infect Dis*. 2003;3(11):709-721. https://doi.org/10.1016/s1473-3099(03)00804-1.
- Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518-553. https://doi.org/10.1128/CMR.12.4.518
- Tissot-Dupont H, Raoult D. Q fever. *Infect Dis Clin North Am*. 2008;22(3):505-514. https://doi.org/10.1016/j.idc.2008.03.002
- Davis GE, Cox HR. A filter-passing Infectious Agent isolated from Ticks. I. Isolation from Dermacentor andersoni, Reactions in Animals, and Filtration Experiments. *Public Health Reports*. 1938;53:2259.
- Zdrodovskiy PF, Golinevich EM. Uchenie o rikketsiyakh i rikketsiozakh. Moscow: Medicine; 1972. (In Russ).
- 14. Kuley R, Smith HE, Janse I, Harders FL, Baas F, Schijlen E, Nabuurs-Franssen MH, Smits MA, Roest HI, Bossers A. First Complete Genome Sequence of the Dutch Veterinary Coxiella burnetii Strain NL3262, Originating from the Largest Global Q Fever Outbreak, and Draft Genome Sequence of Its Epidemiologically Linked Chronic Human Isolate NLhu3345937. Genome Announc. 2016;4(2):e00245.

- https://doi.org/ 16. 10.1128/genomeA.00245-16
- Ladbury GA, Van Leuken JP, Swart A, Vellema P, Schimmer B, Ter Schegget R, Van der Hoek W. Integrating interdisciplinary methodologies for One Health: goat farm re-implicated as the probable source of an urban Q fever outbreak, the Netherlands, 2009. BMC Infect Dis. 2015;15:372. https://doi.org/10.1186/s12879-015-1083-9
- Roest HJ, van Gelderen B, Dinkla A, Frangoulidis D, van Zijderveld F, Rebel J, van Keulen L. Q fever in pregnant goats: pathogenesis and excretion of Coxiella burnetii. *PLoS One*. 2012;7(11):e48949. https:// doi.org/10.1371/journal.pone.0048949
- D'Amato F, Rouli L, Edouard S, Tyczka J, Million M, Robert C, Nguyen TT, Raoult D. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. *Comp Immunol Microbiol Infect Dis.* 2014;37(5-6):281-288. https://doi.org/10.1016/j. cimid.2014.08.003
- Kuley R, Smith HE, Frangoulidis D, Smits MA, Jan Roest HI, Bossers A. Cell-free propagation of Coxiella burnetii does not affect its relative virulence. *PLoS One.* 2015;10(3):e0121661. https://doi.org/10.1371/journal.pone.0121661
- Gumenyuk AS, Pozdnichenko NN, Rodionov IN, Shpynov SN. On the means of formal order analysis of the structure of nucleotide chains. *Mathematical biology and bioinformatics*. 2013;8(1):373-397. (In Russ). https://doi.org/10.17537/2013.8.373
- Shpynov SN, Tarasevich IV, Skiba AA, Pozdnichenko NN, Gumenuk AS. Comparison of genomes of *Coxiella burnetii* strains using formal order analysis. *New Microbes New Infect*. 2018;23:86-92. https://doi. org/10.1016/j.nmni.2018.02.011.
- Fournier P-E. European Society for Coxiellosis, Chlamydioses, Anaplasmoses and Rickettsioses - American Society for Rickettsiology joint meeting 2017. New Microbes New Infect. 2018;23:6. https://doi. org/10.1016/j.nmni.2018.02.001.

Сведения об авторах

Шпынов Станислав Николаевич, доктор медицинских наук, профессор, главный научный сотрудник лаборатории зоонозных инфекций ФБУН «Омский научно-исследовательский институт природно-очаговых инфекций» Роспотребнадзора (644080, Россия, г. Омск, пр-т Мира, д. 7), профессор кафедры микробиологии, вирусологии и иммунологии ФГБОУ ВО «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации (644099, Россия, г. Омск, ул. Ленина, д. 12). Вклад в статью: концепция и дизайн исследования, получение и анализ данных, их интерпретация; переработка важного интеллектуального содержания статьи.

ORCID: 0000-0002-4550-3459

Рудаков Николай Викторович, доктор медицинских наук, профессор, директор ФБУН «Омский научно-исследовательский институт природно-очаговых инфекций» Роспотребнадзора (644080, Россия, г. Омск, пр-т Мира, д. 7), заведующий кафедрой микробиологии, вирусологии и иммунологии ФГБОУ ВО «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации (644099, Россия, г. Омск, ул. Ленина, д. 12).

Вклад в статью: написание статьи, утверждение окончательной версии для публикации.

ORCID: 0000-0001-9566-9214

Зеликман Светлана Юрьевна, младший научный сотрудник лаборатории зоонозных инфекций ФБУН «Омский научно-исследовательский институт природно-очаговых инфекций» Роспотребнадзора (644080, Россия, г. Омск, пр-т Мира, д. 7), ассистент кафедры микробиологии, вирусологии и иммунологии ФГБОУ ВО «Омский государственный медицинский университет» Министерства здравоохранения Российской Федерации (644099, Россия, г. Омск, ул. Ленина, д. 12).

Вклад в статью: написание статьи, ответственность за все аспекты работы, решение вопросов, связанных с точностью и добросовестностью всех частей работы.

ORCID: 0000-0002-8284-1684

Транквилевский Дмитрий Валерьевич, зоолог ФБУЗ «Федеральный центр гигиены и эпидемиологии» Роспотребнадзора», (117105, Россия, г. Москва, Варшавское шоссе, д. 19а).

Вклад в статью: написание статьи, утверждение окончательной версии для публикации.

ORCID: 0000-0002-4896-9369

Статья поступила: 18.04.2022 г. Принята в печать: 30.05.2022 г.

Контент доступен под лицензией СС ВУ 4.0.

Authors

Prof. Stanislav N. Shpynov, MD, DSc, Chief Researcher, Laboratory of Zoonotic Infections, Omsk Research Institute of Natural Focal Infections (7, Mira Prospekt, Omsk, 644080, Russian Federation); Professor, Department of Microbiology, Virology and Immunology, Omsk State Medical University (12, Lenina Street, Omsk, Russian Federation). **Contribution:** conceived and designed the study; collected and processed the data; wrote the manuscript. **ORCID:** 0000-0002-4550-3459

Prof. Nikolay V. Rudakov, MD, DSc, Chief Executive Officer, Omsk Research Institute of Natural Focal Infections (7, Mira Prospekt, Omsk, 644080, Russian Federation); Head of the Department of Microbiology, Virology and Immunology, Omsk State Medical University (12, Lenina Street, Omsk, Russian Federation).

Contribution: wrote the manuscript. ORCID: 0000-0001-9566-9214

Dr. Svetlana Yu. Zelikman, Junior Research Fellow, Laboratory of Zoonotic Infections, Omsk Research Institute of Natural Focal Infections (7, Mira Prospekt, Omsk, 644080, Russian Federation); Assistant Professor, Department of Microbiology, Virology and Immunology, Omsk State Medical University (12, Lenina Street, Omsk, Russian Federation). Contribution: wrote the manuscript.

ORCID: 0000-0002-8284-1684.

Dr. Dmitriy V. Trankvilevskiy, Zoologist, Federal Hygiene and Epidemiology Center (19a, Varshavskoe Highway, Moscow, Russian Federation).

Contribution: wrote the manuscript. ORCID: 0000-0002-4896-9369.

Received: 18.04.2022 Accepted: 30.05.2022

Creative Commons Attribution CC BY 4.0.