Патогенез акушерских и перинатальных осложнений при метаболическоем синдроме
https://doi.org/10.23946/2500-0764-2025-10-2-67-81
Аннотация
Цель. Описать акушерские и перинатальные осложнения при метаболическом синдроме с патогенетическим обоснованием. Материалы и методы. Это описательный обзор, основанный на оригинальных исследованиях и обзорных статьях, посвященных акушерским и перинатальным осложнениям при метаболическом синдроме, опубликованных в 2016–2025 гг. и представленных в базах данных PubMed, ScienceDirect, eLibrary. Были использованы следующие методы исследования: интернет-анализ, контент-анализ, исторический, описательно-аналитический. Результаты. Ожирение и метаболический синдром оказывают негативное влияние на исходы матери и плода. Жировая ткань является активным эндокринным органом, который оказывает регулирующее воздействие на сосудистые, метаболические и воспалительные процессы во многих органах и системах и, таким образом, может влиять на акушерские и перинатальные исходы. Заключение. Эпидемия ожирения привлекла внимание к жировой ткани как к важнейшему узлу регуляции системного гомеостаза питательных веществ и энергии. При метаболическом синдроме жировой ткани необходимо адаптироваться к чрезмерной липидной нагрузке с помощью различных стратегий, включающих увеличение размера и количества адипоцитов, а также перестройку состава иммунных клеток и липидного обмена. Неспособность адаптироваться к повышенной пищевой нагрузке приводит к нарушениям функциональности жировой ткани. В результате запускается каскад липотоксических воздействий на другие органы, приводящих к резистентности к инсулину, диабету и связанным с ними метаболическим осложнениям. Эта динамика значительно ускоряется из-за дополнительной метаболической нагрузки, вызванной беременностью.
Об авторах
К. А. ГуленковаРоссия
Гуленкова Кристина Артуровна, аспирант кафедры акушерства и гинекологии с курсом перинатологии
ул. Миклухо-Маклая, д.6, г. Москва, 117198
А. А. Оразмурадов
Россия
Оразмурадов Агамурад Акмамедович, доктор медицинских наук, профессор, профессор кафедры акушерства и гинекологии с курсом перинатологии
ул. Миклухо-Маклая, д.6, г. Москва, 117198
Е. В. Муковникова
Россия
Муковникова Екатерина Васильевна, аспирант кафедры акушерства и гинекологии с курсом перинатологии
ул. Миклухо-Маклая, д.6, г. Москва, 117198
М. Б. Хамошина
Россия
Хамошина Марина Борисовна, доктор медицинских наук, профессор, профессор кафедры акушерства и гинекологии с курсом перинатологии
ул. Миклухо-Маклая, д.6, г. Москва, 117198
Список литературы
1. Parrettini S., Caroli A., Torlone E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. (Lausanne). 2020;11:611929. https://doi.org/10.3389/fendo.2020.611929
2. Leoni M., Padilla N., Fabbri A., Della-Morte D., Ricordi C., Infante M. Mechanisms of Insulin Resistance during Pregnancy [Internet]. Evolving Concepts in Insulin Resistance. IntechOpen; 2022. Ссылка активна на 07.05.2025. http://dx.doi.org/10.5772/intechopen.107907
3. De Fano M., Bartolini D., Tortoioli C., Vermigli C., Malara M., Galli F. et al. Adipose Tissue Plasticity in Response to Pathophysiological Cues: A Connecting Link between Obesity and Its Associated Comorbidities. Int. J. Mol. Sci. 2022;23(10):5511. https://doi.org/10.3390/ijms23105511
4. Overduin T.S., Page A.J., Young R.L., Gatford K.L. Adaptations in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals: a scoping review protocol. JBI Evid. Synth. 2022;20(2):640–646. https://doi.org/10.11124/JBIES-21-00025
5. Lewandowska M., Więckowska B., Sajdak S. Pre-Pregnancy Obesity, Excessive Gestational Weight Gain, and the Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus. J. Clin. Med. 2020;9(6):1980. https://doi.org/10.3390/jcm9061980
6. Rodríguez-Cano A.M., Calzada-Mendoza C.C., Estrada-Gutierrez G., Mendoza-Ortega J.A., Perichart-Perera O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients. 2020;12(7):2166. https://doi.org/10.3390/nu12072166
7. Knight-Agarwal C.R., Mellor D., Georgousopoulos E.N., Krause B., Coghlan S. Maternal body mass index, smoking status and small for gestational age: an Australian retrospective cohort study. Public Health. 2020;185:381–385. https://doi.org/10.1016/j.puhe.2020.05.029
8. Wu L.L., Chen Y.X., Guan X.N., Tong J.N., Wu X.X., Niu J.M. Associations between pre-pregnancy body mass index and occurrence and clinical features of preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2021;56(2):96–101. Chinese. https://doi.org/10.3760/cma.j.cn112141-20200904-00691
9. Brown J., Kapurubandara S., McGee T.M. Confounding effect of ethnic diversity on booking-in body mass index and prevalence of gestational diabetes and hypertensive disorders in pregnant women in western Sydney 1997-2016. Aust. N. Z. J. Obstet. Gynaecol. 2020;60(3):369– 375. https://doi.org/https://doi.org/10.1111/ajo.13077
10. Vince K., Brkić M., Poljičanin T., Matijević R. Prevalence and impact of pre-pregnancy body mass index on pregnancy outcome: a cross-sectional study in Croatia. J. Obstet. Gynaecol. 2021;41(1):55–59. https://doi.org/10.1080/01443615.2019.1706157
11. Ward M.C., Agarwal A., Bish M., James R., Faulks F., Pitson J. et al. Trends in obesity and impact on obstetric outcomes in a regional hospital in Victoria, Australia. Aust. N. Z. J. Obstet. Gynaecol. 2020;60(2):204–211. https://doi.org/10.1111/ajo.13035
12. Vickers M.H. Early life nutrition and neuroendocrine programming. Neuropharmacology. 2022;205:108921. https://doi.org/10.1016/j.neuropharm.2021.108921
13. Shrestha N., Ezechukwu H.C., Holland O.J., Hryciw D.H. Developmental programming of peripheral diseases in offspring exposed to maternal obesity during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020;319(5):R507–R516. https://doi.org/10.1152/ajp-regu.00214.2020
14. Batra V., Norman E., Morgan H.L., Watkins A.J. Parental Programming of Offspring Health: The Intricate Interplay between Diet, Environment, Reproduction and Development. Biomolecules. 2022;12(9):1289. https://doi.org/10.3390/biom12091289
15. Easton Z.J.W., Regnault T.R.H. The Impact of Maternal Body Composition and Dietary Fat Consumption upon Placental Lipid Processing and Offspring Metabolic Health. Nutrients. 2020;12(10):3031. https://doi.org/10.3390/nu12103031
16. Chen Xu J., Coelho Â. Association between Body Mass Index and Gestational Weight Gain with Obstetric and Neonatal Complications in Pregnant Women with Gestational Diabetes. Acta Med. Port. 2022;35(10):718–728. https://doi.org/10.20344/amp.15896
17. Chiossi G., Cuoghi Costantini R., Menichini D., Tramontano A.L., Diamanti M., Facchinetti F. et al. Do maternal BMI and gestational weight gain equally affect the risk of infant hypoxic and traumatic events? PLoS One. 2024;19(8):e0308441. https://doi.org/10.1371/journal.pone.0308441
18. Reynolds L.P., McLean K.J., McCarthy K.L., Diniz W.J.S., Menezes A.C.B., Forcherio J.C. et al. Nutritional Regulation of Embryonic Survival, Growth, and Development. Adv. Exp. Med. Biol. 2022;1354:63– 76. https://doi.org/10.1007/978-3-030-85686-1_4
19. Moreno-Mendez E., Quintero-Fabian S., Fernandez-Mejia C., Lazode-la-Vega-Monroy M.L. Early-life programming of adipose tissue. Nutr. Res. Rev. 2020;33(2):244–259. https://doi.org/10.1017/S0954422420000037
20. Laker R.C., Altıntaş A., Lillard T.S., Zhang M., Connelly J.J., Sabik O.L. et al. Exercise during pregnancy mitigates negative effects of parental obesity on metabolic function in adult mouse offspring. J. Appl. Physiol. (1985). 2021;130(3):605–616. https://doi.org/10.1152/japplphysiol.00641.2020
21. Tiwari R., Enquobahrie D.A., Wander P.L., Painter I., Souter V. A retrospective cohort study of race/ethnicity, pre-pregnancy weight, and pregnancy complications. J. Matern. Fetal Neonatal Med. 2022;35(25):6388–6395. https://doi.org/10.1080/14767058.2021.1914573
22. Lautredou M., Pan-Petesch B., Dupré P.F., Drugmanne G., Nowak E., Anouilh F. et al. Excessive gestational weight gain is an independent risk factor for gestational diabetes mellitus in singleton pregnancies: Results from a French cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022;275:31–36. https://doi.org/10.1016/j.ejogrb.2022.06.009
23. Barrea L., Vetrani C., Verde L., Frias-Toral E., Garcia-Velasquez E., Ranasinghe P. et al. Mendez V., Jayawardena R., Savastano S., Colao A., Muscogiuri G. Gestational obesity: An unconventional endocrine disruptor for the fetus. Biochem. Pharmacol. 2022;198:114974. https://doi.org/10.1016/j.bcp.2022.114974
24. Platner M.H., Ackerman C.M., Howland R.E., Illuzzi J., Reddy U.M., Bourjeily G. et al. Severe maternal morbidity and mortality during delivery hospitalization of class I, II, III, and super obese women. Am. J. Obstet. Gynecol. MFM. 2021;3(5):100420. https://doi.org/10.1016/j.ajogmf.2021.100420
25. Lyu Y., Cui M., Zhang L., Zheng G., Zuo H., Xiu Q. et al. Pre-pregnancy body mass index, gestational diabetes mellitus, and gestational weight gain: individual and combined effects on fetal growth. Front. Public Health. 2024;12:1354355. https://doi.org/10.3389/fpubh.2024.1354355
26. Carobbio S., Pellegrinelli V., Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. Adv. Exp. Med. Biol. 2024;1460:231–272. https://doi.org/10.1007/978-3-031-63657-8_8
27. Porro S., Genchi V.A., Cignarelli A., Natalicchio A., Laviola L., Giorgino F., et al. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J. Endocrinol. Invest. 2021;44(5):921–941. https://doi.org/10.1007/s40618-020-01446-8
28. Zhao J.Y., Zhou L.J., Ma K.L., Hao R., Li M. MHO or MUO? White adipose tissue remodeling. Obes. Rev. 2024;25(4):e13691.https://doi.org/10.1111/obr.13691
29. Sabaratnam R., Hansen D.R., Svenningsen P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev. Endocr. Metab. Disord. 2023;24(6):1121–1133. https://doi.org/10.1007/s11154-023-09827-z
30. Dhokte S., Czaja K. Visceral Adipose Tissue: The Hidden Culprit for Type 2 Diabetes. Nutrients. 2024;16(7):1015. https://doi.org/10.3390/nu16071015
31. Jensen M.D. Visceral Fat: Culprit or Canary? Endocrinol. Metab. Clin. North Am. 2020;49(2):229–237. https://doi.org/10.1016/j.ecl.2020.02.002
32. Yan K., Wang X., Zhu H., Pan H., Wang L., Yang H. et al. Safflower yellow improves insulin sensitivity in high-fat diet-induced obese mice by promoting peroxisome proliferator-activated receptor-γ2 expression in subcutaneous adipose tissue. J. Diabetes Investig. 2020;11(6):1457– 1469 https://doi.org/10.1111/jdi.13285
33. Rawal K., Patel T.P., Purohit K.M., Israni K., Kataria V., Bhatt H. et al. Influence of obese phenotype on metabolic profile, inflammatory mediators and stemness of hADSC in adipose tissue. Clin. Nutr. 2020;39(12):3829–3835. https://doi.org/10.1016/j.clnu.2020.02.032
34. Hall J.A., Ramachandran D., Roh H.C., DiSpirito J.R., Belchior T., Zushin P.H. et al. Obesity-Linked PPARγ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metab. 2020;32(4):665–675.e6. https://doi.org/10.1016/j.cmet.2020.08.016
35. Al-Jaber H., Mohamed N.A., Govindharajan V.K., Taha S., John J., Halim S. et al. In Vitro and In Vivo Validation of GATA-3 Suppression for Induction of Adipogenesis and Improving Insulin Sensitivity. Int. J. Mol. Sci. 2022;23(19):11142. https://doi.org/10.3390/ijms231911142
36. Sun K., Li X., Scherer P.E. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr. Physiol. 2023;13(1):4387–4407. https://doi.org/10.1002/cphy.c220020
37. Kojta I., Chacińska M., Błachnio-Zabielska A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients. 2020;12(5):1305. https://doi.org/10.3390/nu12051305
38. Poblete J.M.S., Ballinger M.N., Bao S., Alghothani M., Nevado J.B. Jr, Eubank T.D. et al. Macrophage HIF-1α mediates obesity-related adipose tissue dysfunction via interleukin-1 receptor-associated kinase M. Am. J. Physiol. Endocrinol. Metab. 2020;318(5):E689–E700. https://doi.org/10.1152/ajpendo.00174.2019
39. Reyes-Farias M., Fernández-García P., Corrales P., González L., Soria-Gondek A., Martínez E. et al. Interleukin-16 is increased in obesity and alters adipogenesis and inflammation in vitro. Front. Endocrinol. (Lausanne). 2024;15:1346317. https://doi.org/10.3389/fendo.2024.1346317
40. Jannat Ali Pour N., Zabihi-Mahmoudabadi H., Ebrahimi R., Yekaninejad M.S., Hashemnia S.M.R., Meshkani R. et al. Principal component analysis of adipose tissue gene expression of lipogenic and adipogenic factors in obesity. BMC Endocr. Disord. 2023;23(1):94. https://doi.org/10.1186/s12902-023-01347-w
41. Lee W.L., Lee F.K., Wang P.H. Pre-pregnancy body mass index and outcome of preeclampsia. Taiwan. J. Obstet. Gynecol. 2022;61(5):737– 738. https://doi.org/10.1016/j.tjog.2022.05.010
42. Wolf M., Kettyle E., Sandler L., Ecker J.L., Roberts J., Thadhani R. Obesity and preeclampsia: the potential role of inflammation. Obstet. Gynecol. 2001;98(5 Pt 1):757–762. https://doi.org/10.1016/s0029-7844(01)01551-4
43. Marasing I.N., Idris I., Sunarno I., Arifuddin S., Sinrang A.W., Bahar B. Comparison of nitric oxide levels, roll over test value, and body mass index in preeclampsia and normotension. Gac. Sanit. 2021;35 Suppl 2:S306–S309. https://doi.org/10.1016/j.gaceta.2021.10.041
44. Serrano N.C., Guio E., Becerra-Bayona S.M., Quintero-Lesmes D.C., Bautista-Niño P.K., Colmenares-Mejía C. et al. C-reactive protein, interleukin-6 and pre-eclampsia: large-scale evidence from the GenPE case-control study. Scand. J. Clin. Lab. Invest. 2020;80(5):381–387. https://doi.org/10.1080/00365513.2020.1747110
45. da Costa Fernandes C.J., da Cruz Rodrigues K.C., de Melo D.G., de Campos T.D.P., Dos Santos Canciglieri R., Simabuco F.M. et al. Shortterm strength exercise reduces the macrophage M1/M2 ratio in white adipose tissue of obese animals. Life Sci. 2023;329:121916. https://doi.org/10.1016/j.lfs.2023.121916
46. Chattopadhyay D., Das S., Guria S., Basu S., Mukherjee S. Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. Biochem. J. 2021;478(22):4027–4043. https://doi.org/10.1042/BCJ20210442
47. Girón-Ulloa A., González-Domínguez E., Klimek R.S., Pa-tiño-Martínez E., Vargas-Ayala G., Segovia-Gamboa N.C. et al. Specific macrophage subsets accumulate in human subcutaneous and omental fat depots during obesity. Immunol. Cell Biol. 2020;98(10):868– 882. https://doi.org/10.1111/imcb.12380
48. Chen Q., Ruedl C. Obesity retunes turnover kinetics of tissue-resident macrophages in fat. J. Leukoc. Biol. 2020;107(5):773–782. https://doi.org/10.1002/JLB.1MA1219-275R
49. Baldini F., Fabbri R., Eberhagen C., Voci A., Portincasa P., Zischka H. et al. Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci. 2021;265:118812. https://doi.org/10.1016/j.lfs.2020.118812
50. Alviz L., Tebar-García D., Lopez-Rosa R., Galan-Moya E.M., Moratalla-López N., Alonso G.L. et al. Pathogenic Microenvironment from Diabetic-Obese Visceral and Subcutaneous Adipocytes Activating Differentiation of Human Healthy Preadipocytes Increases Intracellular Fat, Effect of the Apocarotenoid Crocetin. Nutrients. 2021;13(3):1032. https://doi.org/10.3390/nu13031032
51. Zhao L., Fan M., Zhao L., Yun H., Yang Y., Wang C. et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J. Cell Mol. Med. 2020;24(21):12813–12825. https://doi.org/10.1111/jcmm.15872
52. Theobalt N., Hofmann I., Fiedler S., Renner S., Dhom G., Feuchtinger A. et al. Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS One. 2021;16(3):e0248594. https://doi.org/10.1371/journal.pone.0248594
53. Watanabe E., Wada T., Okekawa A., Kitamura F., Komatsu G., Onogi Y. et al. Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis. 2020;23(4):667–684. https://doi.org/10.1007/s10456-020-09738-6
54. Loustau T., Coudiere E., Karkeni E., Landrier J.F., Jover B., Riva C. Murine double minute-2 mediates exercise-induced angiogenesis in adipose tissue of diet-induced obese mice. Microvasc. Res. 2020;130:104003. https://doi.org/10.1016/j.mvr.2020.104003
55. Santoro A., McGraw T.E., Kahn B.B. Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab. 2021;33(4):748– 757. https://doi.org/10.1016/j.cmet.2021.03.019
56. Sobczyk K., Holecki T., Woźniak-Holecka J., Grajek M. Does Maternal Obesity Affect Preterm Birth? Documentary Cohort Study of Preterm in Firstborns-Silesia (Poland). Children (Basel). 2022;9(7):1007. https://doi.org/10.3390/children9071007
57. Tersigni C., Neri C., D'Ippolito S., Garofalo S., Martino C., Lanzone A. et al. Impact of maternal obesity on the risk of preterm delivery: insights into pathogenic mechanisms. J. Matern. Fetal Neonatal Med. 2022;35(16):3216–3221. https://doi.org/10.1080/14767058.2020.1817370
58. Lundborg L., Liu X., Åberg K., Sandström A., Tilden E.L., Stephansson O. et al. Association of body mass index and maternal age with first stage duration of labour. Sci Rep. 2021;11(1):13843. https://doi.org/10.1038/s41598-021-93217-5
59. Menichini D., Monari F., Gemmellaro G., Petrella E., Ricchi A., Infante R. et al. Association of maternal Body Mass Index and parity on induced labor stages. Minerva Obstet. Gynecol. 2023;75(6):512–519. https://doi.org/10.23736/S2724-606X.22.05092-8
60. Polónia Valente R., Santos P., Ferraz T., Montenegro N., Rodrigues T. Effect of obesity on labor duration among nulliparous women with epidural analgesia. J. Matern. Fetal Neonatal Med. 2020;33(13):2195– 2201. https://doi.org/10.1080/14767058.2018.1543655
61. Khalifa E., El-Sateh A., Zeeneldin M., Abdelghany A.M., Hosni M., Abdallah A. et al. Effect of maternal BMI on labor outcomes in primigravida pregnant women. BMC Pregnancy Childbirth. 2021;21(1):753. https://doi.org/10.1186/s12884-021-04236-z
62. Johnson D. Obesity may require mode of delivery to be altered. BJOG. 2021;128(5):907. https://doi.org/10.1111/1471-0528.16526
63. D'Souza R., Horyn I., Pavalagantharajah S., Zaffar N., Jacob C.E. Maternal body mass index and pregnancy outcomes: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. MFM. 2019;1(4):100041. https://doi.org/10.1016/j.ajogmf.2019.100041
64. Wang Z.L., Geng H.Z., Zhao X.L., Zhu Q.Y., Lin J.H., Zou L. et al. Survey of related factors of maternal venous thromboembolism in nine hospitals of China. Zhonghua Fu Chan Ke Za Zhi. 2020;55(10):667–672. Chinese. https://doi.org/10.3760/cma.j.cn112141-20200414-00326
65. He L., Liu J., Sun R., Qiu L., Tang L., Gao Y. Risk factors related to venous thromboembolism in pregnant women: a meta-analysis. Int. Angiol. 2024;43(3):323-330. https://doi.org/10.23736/S0392-9590.24.05141-1
66. Blondon M., Harrington L.B., Boehlen F., Robert-Ebadi H., Righini M., Smith N.L. Pre-pregnancy BMI, delivery BMI, gestational weight gain and the risk of postpartum venous thrombosis. Thromb. Res. 2016;145:151–156. https://doi.org/10.1016/j.thromres.2016.06.026
67. Linnemann B., Espinola-Klein C. Thromboembolische Erkrankungen aus angiologischer Sicht [Thromboembolic disease - the angiologist's point of view]. Dtsch. Med. Wochenschr. 2023;148(14):890–898. German. https://doi.org/10.1055/a-1825-7033
68. Pandor A., Tonkins M., Goodacre S., Sworn K., Clowes M., Griffin X.L. et al. Risk assessment models for venous thromboembolism in hospitalised adult patients: a systematic review. BMJ Open. 2021;11(7):e045672. https://doi.org/10.1136/bmjopen-2020-045672
69. Van Es N., Di Nisio M., Cesarman G., Kleinjan A., Otten H.M., Mahé I. et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: a prospective cohort study. Haematologica. 2017;102(9):1494–1501. https://doi.org/10.3324/haematol.2017.169060
70. Nicklas J.M., Gordon A.E., Henke P.K. Resolution of Deep Venous Thrombosis: Proposed Immune Paradigms. Int. J. Mol. Sci. 2020;21(6):2080. https://doi.org/10.3390/ijms21062080
71. Najem M.Y., Couturaud F., Lemarié C.A. Cytokine and chemokine regulation of venous thromboembolism. J. Thromb. Haemost. 2020;18(5):1009–1019. https://doi.org/10.1111/jth.14759
72. Sheikh I., Fuller K.A., Addae-Konadu K., Dotters-Katz S.K., Varvoutis M.S. The Impact of Body Mass Index on Postpartum Infectious Morbidities and Wound Complications: A Study of Extremes. Am. J. Perinatol. 2024;41(3):349–354. https://doi.org/10.1055/a-1682-2976
73. Robinson H.E., O'Connell C.M., Joseph K.S., McLeod N.L. Maternal outcomes in pregnancies complicated by obesity. Obstet. Gynecol. 2005;106(6):1357–1364. https://doi.org/10.1097/01.AOG.0000188387.88032.41
74. Haque R., Keramat S.A., Rahman S.M., Mustafa M.U.R., Alam K. Association of maternal obesity with fetal and neonatal death: Evidence from South and South-East Asian countries. PLoS One. 2021;16(9):e0256725. https://doi.org/10.1371/journal.pone.0256725
75. Lindegren L., Stuart A., Herbst A., Källén K. Relation between perinatal outcome and gestational duration in term primiparous pregnancies stratified by body mass index. Acta Obstet. Gynecol. Scand. 2022;101(12):1414–1421. https://doi.org/10.1111/aogs.14465
76. Dinsmoor M.J., Ugwu L.G., Bailit J.L., Reddy U.M., Wapner R.J., Varner M.W. et al. Short-term neonatal outcomes of pregnancies complicated by maternal obesity. Am. J. Obstet. Gynecol. MFM. 2023;5(4):100874. https://doi.org/10.1016/j.ajogmf.2023.100874
77. Bailey E.J., Frolova A.I., López J.D., Raghuraman N., Macones G.A., Cahill A.G. Mild Neonatal Acidemia is Associated with Neonatal Morbidity at Term. Am. J. Perinatol. 2021;38(S 01):e155–e161. https://doi.org/10.1055/s-0040-1708800
78. Pritchard N.L., Hiscock R., Walker S.P., Tong S., Lindquist A.C. Defining poor growth and stillbirth risk in pregnancy for infants of mothers with overweight and obesity. Am. J. Obstet. Gynecol. 2023;229(1):59.e1–59.e12. https://doi.org/10.1016/j.ajog.2022.12.322
79. Gunes S., Sahin S., Koyuncu Arslan M., Korkmaz N., Karaca Dag O., Gokalp E. et al. Pre-pregnancy obesity and weight gain during pregnancy: impact on newborn outcomes. BMC Pediatr. 2025;25(1):30. https://doi.org/10.1186/s12887-024-05381-y
80. Andrews C., Monthé-Drèze C., Sacks D.A., Ma R.C.W., Tam W.H., McIntyre H.D. et al. Role of maternal glucose metabolism in the association between maternal BMI and neonatal size and adiposity. Int. J. Obes. (Lond). 2021;45(3):515–524. https://doi.org/10.1038/s41366-020-00705-1
81. Mihai M., Vladut S., Sonia-Teodora L., Laura Mihaela S., Victoria N., Irina Elena M., et al. Correlation between Overweight, Obesity, Gestational Diabetes Mellitus, Adipokines (Adipolin and Adiponectin), and Adverse Pregnancy Outcomes: A Pilot Study. Medicina (Kaunas). 2024;60(9):1544. https://doi.org/10.3390/medicina60091544
82. Louwen F., Kreis N.N., Ritter A., Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch. Gynecol. Obstet. 2024;309(6):2279–2288. https://doi.org/10.1007/s00404-024-07462-w
83. Reed S.A., Ashley R., Silver G., Splaine C., Jones A.K., Pillai S.M. et al. Maternal nutrient restriction and over-feeding during gestation alter expression of key factors involved in placental development and vascularization. J. Anim. Sci. 2022;100(6):skac155. https://doi.org/10.1093/jas/skac155
84. Barbour L.A., Farabi S.S., Friedman J.E., Hirsch N.M., Reece MS., Van Pelt R.E. et al. Postprandial Triglycerides Predict Newborn Fat More Strongly than Glucose in Women with Obesity in Early Pregnancy. Obesity (Silver Spring). 2018;26(8):1347–1356. https://doi.org/10.1002/oby.22246
85. Benhalima K., De Landtsheer A., Van Crombrugge P., Moyson C., Verhaeghe J., Verlaenen H. et al. Predictors of neonatal adiposity and associations by fetal sex in women with gestational diabetes mellitus and normal glucose-tolerant women. Acta Diabetol. 2021;58(3):341– 354. https://doi.org/10.1007/s00592-020-01619-0
86. Aplin J.D., Myers J.E., Timms K., Westwood M. Tracking placental development in health and disease. Nat. Rev. Endocrinol. 2020;16(9):479–494. https://doi.org/10.1038/s41574-020-0372-6
87. Kubler J.M., Clifton V.L., Moholdt T., Beetham K.S. The effects of exercise during pregnancy on placental composition: A systematic review and meta-analysis. Placenta. 2022;117:39–46. https://doi.org/10.1016/j.placenta.2021.10.008
88. Bandres-Meriz J., Sanz-Cuadrado M.I., Hurtado de Mendoza I., Majali-Martinez A., Honeder S.E., Cindrova-Davies T. et al. MCM proteins are up-regulated in placentas of women with reduced insulin sensitivity. Biosci. Rep. 2024;44(10):BSR20240430. https://doi.org/10.1042/BSR20240430
89. Parisi F., Milazzo R., Savasi V.M., Cetin I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int. J. Mol. Sci. 2021;22(4):1732. doi: 10.3390/ijms22041732
90. Mannar V., Boro H., Patel D., Agstam S., Dalvi M., Bundela V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. touchREV Endocrinol. 2023;19(1):46–53. https://doi.org/10.17925/EE.2023.19.1.46
91. Li R.L., Kang S. Rewriting cellular fate: epigenetic interventions in obesity and cellular programming. Mol. Med. 2024;30(1):169. https://doi.org/10.1186/s10020-024-00944-2
92. Longo M., Zatterale F., Naderi J., Nigro C., Oriente F., Formisano P. et al. Low-dose Bisphenol-A Promotes Epigenetic Changes at Pparγ Promoter in Adipose Precursor Cells. Nutrients. 2020;12(11):3498. https://doi.org/10.3390/nu12113498
93. Lecoutre S., Pourpe C., Butruille L., Marousez L., Laborie C., Guinez C. et al. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications. FASEB J. 2018;32(5):2768–2778. https://doi.org/10.1096/fj.201700997R
94. de Almeida M.M., Dias-Rocha C.P., Reis-Gomes C.F., Wang H., Cordeiro A., Pazos-Moura C.C. et al. Maternal high-fat diet upregulates type-1 cannabinoid receptor with estrogen signaling changes in a sex- and depot-specific manner in white adipose tissue of adult rat offspring. Eur. J. Nutr. 2021;60(3):1313–1326. https://doi.org/10.1007/s00394-020-02318-w
95. Shook L.L., Kislal S., Edlow A.G. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat. Diagn. 2020;40(9):1126–1137. https://doi.org/10.1002/pd.5724
96. Kong L., Chen X., Gissler M., Lavebratt C. Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int. J. Obes. (Lond). 2020;44(10):1981–2000. https://doi.org/10.1038/s41366-020-0609-4
97. Mitchell A.J., Dunn G.A., Sullivan E.L. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2022;7(5):450–460. https://doi.org/10.1016/j.bpsc.2021.11.014
98. Urbonaite G., Knyzeliene A., Bunn F.S., Smalskys A., Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front. Neurosci. 2022;16:909762. https://doi.org/10.3389/fnins.2022.909762
99. Tong L., Kalish B.T. The impact of maternal obesity on childhood neurodevelopment. J. Perinatol. 2021;41(5):928–939. https://doi.org/10.108/s41372-020-00871-0
100. Kacperska M., Mizera J., Pilecki M., Pomierny-Chamioło L. The impact of excessive maternal weight on the risk of neuropsychiatric disorders in offspring-a narrative review of clinical studies. Pharmacol. Rep. 2024 ;76(3):452–462. https://doi.org/10.1007/s43440-024-00598-1
Рецензия
Для цитирования:
Гуленкова К.А., Оразмурадов А.А., Муковникова Е.В., Хамошина М.Б. Патогенез акушерских и перинатальных осложнений при метаболическоем синдроме. Фундаментальная и клиническая медицина. 2025;10(2):67-81. https://doi.org/10.23946/2500-0764-2025-10-2-67-81
For citation:
Gulenkova K.A., Orazmuradov A.A., Mukovnikova E.V., Khamoshina M.B. Pathogenesis of obstetric and perinatal complications in metabolic syndrome. Fundamental and Clinical Medicine. 2025;10(2):67-81. (In Russ.) https://doi.org/10.23946/2500-0764-2025-10-2-67-81