Preview

Fundamental and Clinical Medicine

Advanced search

The role of constipation in the development of dyslipidemia in the elderly

https://doi.org/10.23946/2500-0764-2025-10-2-118-129

Abstract

Aim. To assess chronic constipation as a pathogenetic factor in the development and exacerbation of dyslipidemia in elderly and senile patients, with a focus on mechanisms involving gut microbiota dysbiosis and endotoxemia. Materials and Methods. A systematic review was conducted following PRISMA guidelines using a study selection flowchart. Searches were performed in PubMed, Scopus, and Web of Science (2010-2024) using the keywords: “chronic constipation,” “dyslipidemia,” “elderly,” “gut microbiota,” “endotoxemia,” “lipid metabolism,” and their synonyms. Of 2,468 identified records, 31 studies were included after removing duplicates (n = 634) and irrelevant articles (n = 1,803). Included studies were original (cohort or crosssectional), reviews, and randomized controlled trials focusing on elderly (≥ 65 years) or mixed cohorts with extrapolated data. Study quality was assessed using the Newcastle–Ottawa Scale (NOS ≥5), ROBINS-I, and the Cochrane Risk of Bias Tool. A narrative data synthesis was applied. Results. Chronic constipation contributes to dysbiosis (i.e., decreased Firmicutes, increased Bacteroidetes, and reduced levels of shortchain fatty acids), which in turn increases intestinal permeability and metabolic endotoxemia (i.e., elevated circulating lipopolysaccharides, C-reactive protein, IL-6, and TNF-α). These changes disrupt lipid metabolism, leading to elevated low-density lipoprotein cholesterol levels that results in an increased risk of cardiovascular disease (coronary artery disease, myocardial infarction, and stroke) with a hazard ratio of 1.34. Dysbiosis may also increase the risk of key geriatric syndromes such as frailty syndrome and sarcopenia. Probiotic supplementation was associated with increased stool frequency (by 1.3 times/week), and polyphenol intake was linked to reduced zonulin levels and improved lipid profiles (decreased low-density lipoprotein cholesterol). Conclusion. Constipation in individuals over 65 years of age represents a systemic risk factor for dyslipidemia through its effects on dysbiosis and endotoxemia. Modulation of the gut microbiota with probiotics and polyphenols holds promise, but long-term clinical trials are needed to confirm these findings

About the Authors

A. V. Martynenko
LLC "Multifunctional Medical Center" M-clinic
Uzbekistan

Dr. Aleksandr V. Martynenko, MD, Cand. Sci. (Medicine), Therapist, Geriatrician

Tantana Street, 1, Tashkent, 100142



S. P. Nunes
Clínica Cuidar Fisio, University St. Carlos Marcelo Pinto
Brazil

Dr. Sibelli P. Nunes, MD, Therapist, Physiotherapist, Nutritionist

68, João Pessoa, 58040-350



References

1. Salari N., Ghasemianrad M., Ammari-Allahyari M., Rasoulpoor S., Shohaimi S., Mohammadi M. Global prevalence of constipation in older adults: a systematic review and meta-analysis. Wien. Klin. Wochenschr. 2023;135(15-16):389–398. https://doi.org/10.1007/s00508-023-02156-w

2. Dong Q., Chen D., Zhang Y., Xu Y., Yan L., Jiang J. Constipation and cardiovascular disease: A two-sample Mendelian randomization analysis. Front. Cardiovasc. Med. 2023;10:1080982. https://doi.org/10.3389/fcvm.2023.1080982

3. Zhang D., Jian Y.P., Zhang Y.N., Li Y., Gu L.T., Sun H.H. et al. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023;21(1):212. https://doi. org/10.1186/s12964-023-01219-9

4. Vinchurkar K., Kumar B., Mane S. Gastrointestinal tract motility and transport. In: Parambath A., eds. Polymers for oral drug delivery technologies. Woodhead Publishing Series in Biomaterials. Oxford: Elsevier Science Ltd, 2025:65–84. https://doi.org/10.1016/B978-0-443-13774-7.00002-5

5. Di Vincenzo F., Del Gaudio A., Petito V., Lopetuso L.R., Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern. Emerg. Med. 2024;19(2):275–293. https://doi.org/10.1007/s11739-023-03374-w

6. Yoshida N., Emoto T., Yamashita T., Watanabe H., Hayashi T., Tabata T. et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation. 2018;138(22):2486–2498. https://doi.org/10.1161/CIRCULATIONAHA.118.033714

7. Khaledi M., Poureslamfar B., Alsaab H.O., Tafaghodi S., Hjazi A., Singh R. et al. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. Ann. Microbiol. 2024;74(1):1. https://doi.org/10.1186/s13213-023-01744-5

8. Cheever C.R., Shams R.B., Willingham K.R., Sim H., Cook L.M., Ahmidouch M.Y. et al. Understanding constipation as a geriatric syndrome. Geriatr. Nurs. 2025;61:440–448. https://doi.org/10.1016/j.gerinurse.2024.12.012

9. Mari A., Mahamid M., Amara H., Baker F.A., Yaccob A. Chronic Constipation in the Elderly Patient: Updates in Evaluation and Management. Korean J. Fam. Med. 2020;41(3):139–145. https://doi.org/10.4082/kjfm.18.0182

10. De Giorgio R., Ruggeri E., Stanghellini V., Eusebi L.H., Bazzoli F., Chiarioni G. Chronic constipation in the elderly: a primer for the gastroenterologist. BMC Gastroenterol. 2015;15:130. https://doi.org/10.1186/s12876-015-0366-3

11. Guo M., Yao J., Yang F., Liu W., Bai H., Ma J. et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients. Future Microbiol. 2020;15:163–175. https://doi.org/10.2217/fmb-2019-0283

12. Zhu L., Liu W., Alkhouri R., Baker R.D., Bard J.E., Quigley E.M. et al. Structural changes in the gut microbiome of constipated patients. Physiol. Genomics. 2014;46(18):679–686. https://doi.org/10.1152/physiolgenomics.00082.2014

13. Tian H., Ye C., Yang B., Cui J., Zheng Z., Wu C. et al. Gut Metagenome as a Potential Diagnostic and Predictive Biomarker in Slow Transit Constipation. Front. Med. (Lausanne). 2022;8:777961. https://doi.org/10.3389/fmed.2021.777961

14. Ohkusa T., Koido S., Nishikawa Y., Sato N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. (Lausanne). 2019;6:19. https://doi.org/10.3389/fmed.2019.00019

15. Feng C., Gao G., Wu K., Weng X. Causal relationship between gut microbiota and constipation: a bidirectional Mendelian randomization study. Front. Microbiol. 2024;15:1438778. https://doi.org/10.3389/fmicb.2024.1438778

16. Vaiserman A., Romanenko M., Piven L., Moseiko V., Lushchak O., Kryzhanovska N. et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC Microbiol. 2020;20(1):221. https://doi.org/10.1186/s12866-020-01903-7

17. Liu X., Wang Y., Shen L., Sun Y., Zeng B., Zhu B. et al. Dai F. Association between frailty and chronic constipation and chronic diarrhea among American older adults: National Health and Nutrition Examination Survey. BMC Geriatr. 2023;23(1):745. https://doi.org/10.1186/s12877-023-04438-4

18. Hairul Hisham H.I., Lim S.M., Neoh C.F., Abdul Majeed A.B., Shahar S., Ramasamy K. Effects of non-pharmacological interventions on gut microbiota and intestinal permeability in older adults: A systematic review: Non-pharmacological interventions on gut microbiota/barrier. Arch. Gerontol. Geriatr. 2025;128:105640. https://doi.org/10.1016/j.archger.2024.105640

19. Del Bo' C., Bernardi S., Cherubini A., Porrini M., Gargari G., Hidalgo- Liberona N. et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin. Nutr. 2021;40(5):3006–3018. https://doi.org/10.1016/j.clnu.2020.12.014

20. Peron G., Gargari G., Meroño T., Miñarro A., Lozano E.V., Escuder P.C. et al. Crosstalk among intestinal barrier, gut microbiota and serum metabolome after a polyphenol-rich diet in older subjects with "leaky gut": The MaPLE trial. Clin. Nutr. 2021;40(10):5288–5297. https://doi.org/10.1016/j.clnu.2021.08.027

21. Moreno-Navarrete J.M., Manco M., Ibáñez J., García-Fuentes E., Ortega F., Gorostiaga E. et al. Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance. Int. J. Obes. (Lond). 2010;34(2):240–249. https://doi.org/10.1038/ijo.2009.242

22. Liu X., Lu L., Yao P., Ma Y., Wang F., Jin Q. et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia. 2014;57(9):1834–1841. https://doi.org/10.1007/s00125-014-3288-7

23. Gonzalez-Quintela A., Alonso M., Campos J., Vizcaino L., Loidi L., Gude F. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One. 2013;8(1):e54600. https://doi.org/10.1371/journal.pone.0054600

24. Lei L., Zhao N., Zhang L., Chen J., Liu X., Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front. Endocrinol. (Lausanne). 2022;13:950826. https://doi.org/10.3389/fendo.2022.950826

25. Guevara-Cruz M., Flores-López A.G., Aguilar-López M., Sánchez-Tapia M., Medina-Vera I., Díaz D. Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J. Am. Heart Assoc. 2019;8(17):e012401. https://doi.org/10.1161/JAHA.119.012401

26. Judkins C.P., Wang Y., Jelinic M., Bobik A., Vinh A., Sobey C.G. et al. Association of constipation with increased risk of hypertension and cardiovascular events in elderly Australian patients. Sci. Rep. 2023;13(1):10943. https://doi.org/10.1038/s41598-023-38068-y

27. Nagata N., Xu L., Kohno S., Ushida Y., Aoki Y., Umeda R. et al. Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes. 2017;66(5):1222–1236. https://doi.org/10.2337/db16-0662

28. Anhê F.F., Roy D., Pilon G., Dudonné S., Matamoros S., Varin T.V. et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–883. https://doi.org/10.1136/gutjnl-2014-307142

29. Gomes A.C., Hoffmann C., Mota J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–325. https://doi.org/10.1080/19490976.2018.1465157

30. Kim J.S., Kirkland R.A., Lee S.H., Cawthon C.R., Rzepka K.W., Minaya D.M., et al. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiol. Behav. 2020;225:113082. https://doi.org/10.1016/j.physbeh.2020.113082

31. Ticinesi A., Tana C., Nouvenne A., Prati B., Lauretani F., Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin. Interv. Aging. 2018;13:1497–1511. https://doi.org/10.2147/CIA.S139163

32. Casati M., Ferri E., Azzolino D., Cesari M., Arosio B. Gut microbiota and physical frailty through the mediation of sarcopenia. Exp. Gerontol. 2019;124:110639. https://doi.org/10.1016/j.exger.2019.110639

33. Ticinesi A., Nouvenne A., Cerundolo N., Catania P., Prati B., Tana C. et al. Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients. 2019;11(7):1633. https://doi.org/10.3390/nu11071633

34. Dimidi E., Christodoulides S., Fragkos K.C., Scott S.M., Whelan K. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014;100(4):1075–1084. https://doi.org/10.3945/ajcn.114.089151

35. Ford A.C., Quigley E.M., Lacy B.E., Lembo A.J., Saito Y.A., Schiller L.R. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 2014;109(10):1547–1561. https://doi.org/10.1038/ajg.2014.202

36. Gil-Cardoso K., Ginés I., Pinent M., Ardévol A., Blay M., Terra X. The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. J. Nutr. Biochem. 2018;62:35–42. https://doi.org/10.1016/j.jnutbio.2018.07.012

37. Dey P., Sasaki G.Y., Wei P., Li J., Wang L., Zhu J. et al. Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J. Nutr. Biochem. 2019;67:78–89. https://doi.org/10.1016/j.jnutbio.2019.01.017

38. Acharya B., Tofthagen M., Maciej-Hulme M.L., Suissa M.R., Karlsson N.G. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J. 2024;41(4-5):323– 342. https://doi.org/10.1007/s10719-024-10165-8

39.


Review

For citations:


Martynenko A.V., Nunes S.P. The role of constipation in the development of dyslipidemia in the elderly. Fundamental and Clinical Medicine. 2025;10(2):118-129. (In Russ.) https://doi.org/10.23946/2500-0764-2025-10-2-118-129

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)