Preview

Фундаментальная и клиническая медицина

Расширенный поиск

РОЛЬ МИКРОБИОТЫ В ПОДДЕРЖАНИИ ГОМЕОСТАЗА И ИНДУКЦИИ МУТАГЕНЕЗА В СОМАТИЧЕСКИХ КЛЕТКАХ ЧЕЛОВЕКА

Полный текст:

Аннотация

Бактерии, населяющие наш организм, составляют сложнейшее сообщество микроорганизмов, называемое микробиотой. В связи с этим организм человека следует рассматривать как «мета-организм», имея в виду многообразие эволюционно закрепленных в организме человека бактерий. Развитие современных методов молекулярной биологии позволило накопить достаточное количество фактов влияния микробиоты в поддержании жизнедеятельности организма человека преимущественно через синтез биологически-активных соединений. Вместе с тем в процессе исследования микробиома было установлено, что некоторые бактерии способны к продукции генотоксинов, вызывающих мутации в ДНК клетках организма-хозяина. Негативное влияние некоторых факторов внешней среды приводит к дисбалансу состава микробиоты в конкретных органах, что, в свою очередь, способствует возникновению ряда патологических процессов. Выявляются новые связи состава бактериальной микрофлоры с различными заболеваниями, в том числе со многими формами рака. Целью данного обзора является обобщение основных фактов влияния микробиоты на поддержание нормальных физиологических процессов в организме человека и на развитие различных патологических состояний, вызванных продуктами метаболизма бактерий.

Об авторах

В. Г. Дружинин
ФГБОУ ВО «Кемеровский государственный университет» Министерства образования и науки Российской Федерации
Россия


В. Ю. Буслаев
ФГБОУ ВО «Кемеровский государственный университет» Министерства образования и науки Российской Федерации
Россия


Е. Д. Баранова
ФГБОУ ВО «Кемеровский государственный университет» Министерства образования и науки Российской Федерации
Россия


Л. В. Начева
ФГБОУ ВО «Кемеровский государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. Perry R, Peng L, Barry N, Cline G, Zhang D, Cardone R, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016; 534:213-217

2. Turnbaugh P, Ley R, Mahowald M, Magrini V, Mardis E, Gordon J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444: 1027-1031

3. Gill S, Pop M, Deboy R, Eckburg P, Turnbaugh P, Samuel B, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312:1355-1359

4. Roberfroid M, Bornet F, Bouley C, Cummings J. Colonic microora: nutrition and health. Nutr Rev. 1995; 53:127-130

5. Larsbrink J, Rogers T, Hemsworth G, McKee L, Tauzin A, Spadiut O, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature. 2014; 506:498-502

6. Goh Y, Klaenhammer T. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu Rev Food Sci Technol. 2015;6:137-156

7. Morowitz M, Carlisle E, Alverdy J. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am. 2011;91:771-785

8. Duncan S, Louis P, Thomson J, Flint H. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009; 11:2112-2122

9. Cani P, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13:935-940

10. Fung K, Cosgrove L, Lockett T, Head R, Topping D. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 2012; 108:820-831

11. Smith P, Howitt M, Panikov N, Michaud M, Gallini C, Bohlooly Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013; 341:569-573

12. Furusawa Y, Obata Y, Fukuda S, Endo T, Nakato G, Takhashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504:446-450

13. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013; 504: 451-455

14. Louis P, Hold G, Flint H. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12: 661-672

15. Thangaraju M, Cresci G, Liu K, Ananth S, Gnanaprakasaman J, Browning D et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009; 69:2826-2832

16. Maslowski K, Vieira A, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282-1286

17. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca I, et al., Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008 ;456:507-510

18. MacPherson A, Dinkel K, Sapolsky R. Glucocorticoids worsen excitotoxin-induced expression of pro-inammatory cytokines in hippocampal cultures. Exp Neurol. 2005;194:376-383

19. Thaiss C, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65-74

20. Magrone T, Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inammation. Immun Ageing A. 2013;10:31

21. Fink R, Black E, Hou Z, Sugawara M, Sadowski M, Diez-Gonzalez F. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl Environ Microbiol. 2012 ;78:1752-1764

22. McKernan D, Gaszner G, Quigley E, Cryan J, Dinan T. Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment Pharmacol Ther. 2011 ;33:1045-1052

23. Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, et al. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J. 2012 ;6:2091-2106

24. Klaunig J, Kamendulis L, Hocevar B. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010 ;38:96-109

25. Maurice C, Haiser H, Turnbaugh P. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013 ;152:39-50

26. Hooper L, Littman D, Macpherson A. Interactions between the microbiota and the immune system. Science. 2012; 336:1268-1273

27. Gill J. Reported levels of alcohol consumption and binge drinking within the UK undergraduate student population over the last 25 years. Alcohol Alcohol Oxf Oxfs. 2002; 37:109-120

28. Hughes R, Magee E, Bingham S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol. 2000; 1:51-58

29. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012; 56:184-196

30. Di Martino M, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol IJMM. 2013; 303:484-491

31. Pegg A. Toxicity of polyamines and their metabolic products. Chem Res Toxicol. 2013; 26:1782-1800

32. Magee E, Richardson C, Hughes R, Cummings J. Contribution of dietary protein to sulde production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000; 72:1488-1494

33. Marquet P, Duncan S, Chassard C, Bernalier-Donadille A, Flint H. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett. 2009; 299:128-134

34. Roediger W, Moore J, Babidge W. Colonic sulde in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997; 42:1571-1579

35. Attene-Ramos M, Wagner E, Gaskins H, Plewa M. Hydrogen sulde induces direct radical-associated DNA damage. Mol Cancer Res MCR. 2007; 5:455-459

36. Bernstein H, Bernstein C, Payne C, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009; 15:3329-3340

37. Barrasa J, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol Vitro Int J Publ Assoc BIBRA. 2013; 27:964-977

38. Homann N, König IR, Marks M, Benesova M, Stickel F, Millonig G, et al. Alcohol and colorectal cancer: the role of alcohol dehydrogenase 1C polymorphism. Alcohol Clin Exp Res. 2009; 33:551-556

39. Cajthaml T, Bhatt M, Sasek V, Mateju V. Bioremediation of PAH-contaminated soil by composting: a case study. Folia Microbiol (Praha). 2002; 47:696-700

40. Karthikeyan R, Bhandari A. Anaerobic Biotransformation of Aromatic and Polycyclic Aromatic Hydrocarbons in Soil Microcosms: A Review. J Hazard Subst Res [Internet]. 2001 Jan 1 [cited 2018 Jun 30];3(1)

41. Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005; 113:6-10

42. Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, et al. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta. 2006 ;1766:63-78

43. Cheng Y, Chen C, Lin P, Huang K, Lin T, Wu M, et al. DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Eur J Cancer Oxf Engl 1990. 2000; 36:1381-1388

44. Elwell C, Dreyfus L. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol. 2000 ;37:952-963

45. Dreyfus L. Cytolethal Distending Toxin. In: Burns DL, Barbieri JT, Iglewski BH, Rappuoli R, editors. Bacterial Protein Toxins [Internet]. American Society of Microbiology; 2003 [cited 2018 Jun 30]. p. 257-70. Available from: http://www.asmscience.org/content/book/10.1128/9781555817893.chap18

46. Jinadasa R, Bloom S, Weiss R, Duhamel G. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiol Read Engl. 2011 ;157:1851-1875

47. Scott D, Kaper J. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun. 1994; 62:244-251

48. Lara-Tejero M, Galán J. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun. 2001 ;69:4358-4365

49. Eshraghi A, Maldonado-Arocho F, Gargi A, Cardwell M, Prouty M, Blanke S, et al. Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol. J Biol Chem. 2010; 285:1199-1207

50. Nesić D, Hsu Y, Stebbins C. Assembly and function of a bacterial genotoxin. Nature. 2004; 429:429-433

51. Shenker B, Dlakic M, Walker L, Besack D, Jaffe E, LaBelle E, et al. A Novel Mode of Action for a Microbial-Derived Immunotoxin: The Cytolethal Distending Toxin Subunit B Exhibits Phosphatidylinositol 3,4,5-Triphosphate Phosphatase Activity. J Immunol. 2007;178:5099-5108

52. Song J, Gao X, Galán J. Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature. 2013; 499:350-354

53. Haghjoo E, Galán J. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A. 2004; 101:4614-4619

54. Chong A, Lee S, Yang Y, Song J. The Role of Typhoid Toxin in Salmonella Typhi Virulence. Yale J Biol Med. 2017; 90:283-290

55. Johnson J, Johnston B, Kuskowski M, Nougayrede J, Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol. 2008; 46:3906-3911

56. Nougayrède J, Homburg S, Taieb F, Boury M, Brzuszkiewcz E, Gottschalk G, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006; 313:848-851

57. Krempler A, Deckbar D, Jeggo P, Lobrich M. An imperfect G2M checkpoint contributes to chromosome instability following irradiation of S and G2 phase cells. Cell Cycle Georget Tex. 2007; 6:1682-1686

58. Cuevas-Ramos G, Petit C, Marcq I., Boury M, Oswald E, Nougayrede J. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci. 2010; 107:11537-11542

59. Parsonnet J, Isaacson PG. Bacterial infection and MALT lymphoma. N Engl J Med. 2004; 350:213-215

60. Backert S, Clyne M. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2011; 1:19-25

61. Hartung M, Gruber D, Koch K, Gruter L, Rehrauer H, Tegtmeyer N, Backert S, et al. H. pylori -Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression. Cell Rep. 2015; 13:70-79

62. Toller I, Neelsen K, Steger M, Hartung M, Hottiger M, Stucki M, Kalali B, et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci. 2011; 108:14944-14949

63. Xiao A, Li H, Shechter D, Fabrizio L, Erdjumebt-Bromash H, Ishibe-Murkami S, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009; 457:57-62

64. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008; 9:402-412

65. Kalisperati P, Spanou E, Pateras I, Korkolopoulou P, Varvarigou A, Karavokyros I, et al. Inammation, DNA Damage, Helicobacter pylori and Gastric Tumorigenesis. Front Genet. 2017;8:20

66. Driscoll J, Brody S, Kollef M. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007; 67:351-368

67. Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 2013; 41:1-20

68. Domenighini M, Rappuoli R. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol. 1996; 4:667-674

69. Jørgensen R, Merrill A, Yates S, Marquez V, Schwan A, Boesen T, et al. Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature. 2005; 436:979-984

70. Yates S, Merrill A. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A. Biochem J. 2004; 379:563-572

71. Armstrong S, Merrill A. Application of a uorometric assay for characterization of the catalytic competency of a domain III fragment of Pseudomonas aeruginosa exotoxin A. Anal Biochem. 2001; 292:26-33

72. Chang J, Kwon H. Expression of 14-3-3delta, cdc2 and cyclin B proteins related to exotoxin A-induced apoptosis in HeLa S3 cells. Int Immunopharmacol. 2007; 7:1185-1191

73. Du X, Youle R, FitzGerald D, Pastan I. Pseudomonas exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of Mcl-1. Mol Cell Biol. 2010; 30:3444-3452

74. Huycke M, Abrams V, Moore D. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 2002; 23:529-536

75. Wang M, Honn K, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 2007; 26:525-534

76. Lozupone C, Cota-Gomez A, Palmer B, Linderman D, Charlson E, Sodergren E, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013; 187:1110-1117

77. Schinnerling K, Moos V, Geelhaar A, Allers K, Loddenkemper C, Friebel J, et al. Regulatory T Cells in Patients with Whipple’s Disease. J Immunol. 2011; 187:4061-4067

78. Charlson E, Bittinger K, Haas A, Fitzgerald A, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011; 184:957-963

79. Fenollar F, Trani M, Davoust B, Salle B, Birg M, Rolain J, et al. Prevalence of asymptomatic Tropheryma whipplei carriage among humans and nonhuman primates. J Infect Dis. 2008; 197:880-887


Для цитирования:


Дружинин В.Г., Буслаев В.Ю., Баранова Е.Д., Начева Л.В. РОЛЬ МИКРОБИОТЫ В ПОДДЕРЖАНИИ ГОМЕОСТАЗА И ИНДУКЦИИ МУТАГЕНЕЗА В СОМАТИЧЕСКИХ КЛЕТКАХ ЧЕЛОВЕКА. Фундаментальная и клиническая медицина. 2018;3(4):83-92.

For citation:


Druzhinin V.G., Buslaev V.Y., Baranova E.D., Nacheva L.V. THE ROLE OF MICROBIOTA IN CELLULAR HOMEOSTASIS AND MUTAGENESIS. Fundamental and Clinical Medicine. 2018;3(4):83-92. (In Russ.)

Просмотров: 78


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)