Preview

Фундаментальная и клиническая медицина

Расширенный поиск

НЕЙРОВОСПАЛЕНИЕ В КРИТИЧЕСКИХ СОСТОЯНИЯХ: МЕХАНИЗМЫ И ПРОТЕКТИВНАЯ РОЛЬ ГИПОТЕРМИИ

Полный текст:

Аннотация

Факторы стерильного и неспецифического нейровоспаления как проявления системного воспалительного ответа наблюдаются во всех критических состояниях. Предложено множество прогностических и диагностических кандидатов-маркеров тяжести нейровоспаления, исходя из вовлечения в реализацию неспецифического нейровоспалительного ответа при инсульте, тяжелой травме, сепсисе. Как фокальное, так и глобальное повреждение головного мозга любого происхождения вызывает экспрессию генов воспалительного ответа, активацию микроглии, выброс и нарушение соотношения про- и противовоспалительных цитокинов, активацию молекул межклеточной адгезии, клеток врожденного и адаптивного компонентов иммунитета. Терапевтическая гипотермия демонстрирует эффективность в отношении воздействия на компоненты как собственно нейровоспаления, так и на другие факторы патогенеза критического состояния (нормализация функции нейроваскулярной единицы, снижением экспрессии молекул адгезии, стабилизация межклеточного матрикса, модуляция про- и противовоспалительных цитокинов). Терапевтические возможности гипотермии в условиях системного воспалительного ответа с целью его ограничения весьма привлекательны, что обуславливает потенциальные возможности использования индуцированной коррекции температурного режима в интенсивном лечении критических больных.

Об авторах

Е. В. Григорьев
ФГБНУ «НИИ комплексных проблем сердечно-сосудистых заболеваний»
Россия


Д. Л. Шукевич
ФГБНУ «НИИ комплексных проблем сердечно-сосудистых заболеваний»
Россия


Г. П. Плотников
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России
Россия


М. В. Хуторная
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России
Россия


А.В. Цепокина
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России
Россия


А. С. Радивилко
ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России
Россия


Список литературы

1. Arvin B, Neville LF, Barone FC, Feuerstein GZ. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 1996; 20: 445-452.

2. Khilazheva ED, Boytsova EB, Pozhilenkova EA, Solonchuk YuR, Salmina AB. Obtaining a three-cell model of a neurovascular unit in vitro. Cell and Tissue Biology 2015; 9 (6): 447-451.

3. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009; 158 (3): 1021-1029.

4. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009; 276 (1):13-26.

5. Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007; 38 (2 Suppl): 770-773.

6. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 2006; 66 (3): 232-245.

7. Kadhim HJ, Duchateau J, Sebire G. Cytokines and brain injury: invited review. J Intensive Care Med. 2008; 23 (4): 236-249.

8. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007; 184 (1-2): 53-68.

9. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol.2000; 10 (1):95-112.

10. del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke. 2007; 38 (2 Suppl): 646-651.

11. Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA et al. Allan SM. Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab. 2007; 27 (12): 1941-1953.

12. Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanagi K et al. Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal ischemia in rats. J Neuroimmunol. 2000; 109 (2): 66-74.

13. Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci. 2008; 28 (9): 2221-2230

14. Lai AY, Todd KG. Microglia in cerebral ischemia: molecular actions and interactions. Can J PhysiolPharmacol.2006; 84 (1): 49-59.

15. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005; 6 (10): 775-786.

16. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J. 2006; 20 (6): 714-716.

17. Petty MA, Lo EH. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog. Neurobiol. 2002; 68 (5): 311-323.

18. Christov A, Ottman JT, Grammas P. Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurol Res. 2004; 26 (5): 540-546.

19. Mennicken F, Maki R, de Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci. 1999; 20 (2): 73-78.

20. Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001; 22: 147-184.

21. Minami M, Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci. 2003; 74 (2-3): 321-327.

22. Banwell V, Sena ES, Macleod MR. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke. J Stroke Cerebrovasc Dis. 2009; 18 (4): 269-276.

23. Clausen BH, Lambertsen KL, Babcock AA, Holm TH, Dagnaes-Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008; (5): 46.

24. Simi A, Tsakiri N, Wang P, Rothwell NJ. Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans. 2007; 35 (Pt 5): 1122-1126.

25. Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA. Inflammation following stroke. J Clin Neurosci. 2006; 13 (1): 1-8.

26. Clark SR, McMahon CJ, Gueorguieva I, Rowland M, Scarth S, Georgiou R, Georgiou R et al. Interleukin-1 receptor antagonist penetrates human brain at experimentally therapeutic concentrations. J Cereb Blood Flow Metab. 2008; 28 (2): 387-394.

27. Somera-Molina KC, Nair S, Van Eldik LJ, Watterson DM, Wainwright MS. Enhanced microglial activation and proinflammatory cytokine upregulation are linked to increased susceptibility to seizures and neurologic injury in a ‘two-hit’ seizure model. Brain Res. 2009; 1282: 162-172.

28. Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song XY, et al. Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2005; 25: 959-967.

29. Sriram K, O’Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007; 2: 140-153.

30. Vitkovic L, Maeda S, Sternberg E. Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation. 2001; 9(6): 295-312

31. Orion D, Schwammenthal Y, Reshef T, Schwartz R, Tsabari R, Merzeliak O et al. Interleukin-6 and soluble intercellular adhesion molecule-1 in acute brain ischaemia. Eur J Neurol. 2008; 15 (4): 323-328.

32. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem. 2007; 103 (2): 590-603.

33. Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock. 2006; 25 (6): 571-574.

34. Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006; 26 (24): 6413-6421.

35. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci. 2008; 28: 12023-12031.

36. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. Inuence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci. 2002; 22 (10): 3921-3928.

37. Maier CM, Sun GH, Cheng D, Yenari MA, Chan PH, Steinberg GK. Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis. 2002; 11 (1): 28-42

38. Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, Chamorro A et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003; 23: 1430-1440.

39. Lee JE, Yoon YJ, Moseley ME, Yenari MA. Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke. J Neurosurg. 2005; 103 (2): 289-297.

40. Tsai NW, Chang WN, Shaw CF, Jan CR, Huang CR, Chen SD et al. The value of leukocyte adhesion molecules in patients after ischemic stroke. J Neurol. 2009; 256 (8): 1296-1302.

41. Van Hemelrijck A, Hachimi-Idrissi S, Sarre S, Ebinger G, Michotte Y. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci. 2005; 22 (6): 1327-1337.

42. Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y et al. The evolution of serum astroglial S-100 beta protein in patients with cardiac arrest treated with mild hypothermia. Resuscitation. 2005; 64 (2): 187-192.

43. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009; 15 (2): 192-199.

44. Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol. 2007; 179 (1): 33-40.

45. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008; 28: 927-938.

46. Wang GJ, Deg HY, Maier CM, Sun GH, Yenari MA. Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia monocyte accumulation following experimental stroke. Neuroscience. 2002; 114: 1081-1090.

47. Webster CM, Kelly S, Koike MA, Chock VY, Giffard RG, Yenari MA. Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis. 2009; 33 (2): 301-312.

48. Deng H, Han HS, Cheng D, Sun GH, Yenari MA. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke. 2003; 34 (10): 2495-2501.

49. Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma. 2009; 26 (3): 301-312.

50. Kollmar R, Schwab S. Hypothermia in focal ischemia: implications of experiments and experience. J Neurotrauma. 2009; 26 (3): 377-386.

51. Усенко Л.В., Царев А.В. Искусственная гипотермия в современной реаниматологии // Общая реаниматология. 2009. Т. 5, №1. С. 21-23.

52. Shevelev O.A., Butrov A.V., Kalenova I.E., Sharinova I.A. Therapeutic hypothermia - the mode of neuroprotection in ischemic stroke. Russian medical journal. 2012; 20 (18): 893-895.

53. Григорьев Е.В., Шукевич Д.Л., Плотников Г.П., Тихонов Н.С. Терапевтическая гипотермия: возможности и перспективы // Клиническая медицина. 2014. Т.92, №9. С.9-16.

54. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003; 23 (5): 589-598.

55. Liu L, Yenari MA. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci. 2007; 12:816-825.

56. Lyden PD, Krieger D, Yenari M, Dietrich WD. Therapeutic hypothermia for acute stroke. Int J Stroke. 2006; (1):9-19.

57. Ohta H,Terao Y, Shintani Y, Kiyota Y. Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia. Neurosci Res. 2007; 57 (3): 424-433.

58. Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol. 2003; 285 (1): H17-25.

59. Tang XN, Liu L, Yenari MA. Combination therapy with hypothermia for treatment of cerebral ischemia. J Neurotrauma. 2009; 26 (3): 325-331.

60. Zhang H, Zhou M, Zhang J, Mei Y, Sun S, Tong E. Therapeutic effect of post-ischemic hypothermia duration on cerebral ischemic injury. Neurol Res. 2008; 30 (4): 332-334.


Для цитирования:


Григорьев Е.В., Шукевич Д.Л., Плотников Г.П., Хуторная М.В., Цепокина А., Радивилко А.С. НЕЙРОВОСПАЛЕНИЕ В КРИТИЧЕСКИХ СОСТОЯНИЯХ: МЕХАНИЗМЫ И ПРОТЕКТИВНАЯ РОЛЬ ГИПОТЕРМИИ. Фундаментальная и клиническая медицина. 2016;1(3):88-96.

For citation:


Evgeniy V. Grigoriev ., Dmitriy L. Shukevich ., Georgiy P. Plotnikov ., Maria V. Khutornaya ., Anna V. Tsepokina ., Artem S. Radivilko . NEUROINFLAMMATION IN CRITICAL CARE: MECHANISMS AND PROTECTIVE ROLE OF HYPOTHERMIA. Fundamental and Clinical Medicine. 2016;1(3):88-96. (In Russ.)

Просмотров: 40


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)