Preview

Fundamental and Clinical Medicine

Advanced search

Patients with metabolic syndrome and premature atrial contractions: predicting the atrial fbrillation onset

https://doi.org/10.23946/2500-0764-2022-7-2-75-83

Abstract

Aim. To develop an algorithm for the prediction of the atrial fbrillation onset in patients with metabolic syndrome (MS) and premature atrial contractions (PACs) in a prospective study.

Materials and Methods. We enrolled 1,726 MS patients (age range 45-75 years) with ≥ 100 PACs per day. We measured cardiac chamber volumes, left ventricle contractility, parameters of the atrial electrocardiogram, P-wave dispersion, and the origin of PACs, further calculating the potential index of atrial fbrillation (PI) according to the CHARGEAF (RCHARGE-AF) model. The follow-up was 1-5 years. Maintenance of sinus rhythm or development of atrial fbrillation (AF) were the study endpoints.

Results. Paroxysmal or persistent AF was registered in 218 (12.41%) patients. Elderly patients with MS and RCHARGE-AF score ≥ 0.72 units or predictors of AF development of AF (e.g., PACs or atrial enlargement) belonged to AF risk group. Development of AF in patients with MS correlated (OR > 3) with left atrial end-diastolic volume index > 34 mL/m2 with its average increase of +5% per year (OR = 3.3), RCHARGE-AF ≥ 0.72 (OR = 4.2), and PI < 8 units followed by an average regression of -20%/ year (OR = 14.8). The accuracy of predicting atrial fbrillation within 3-5 years before its onset was ≈ 60%, reaching ≥ 86% for the 3-year time frame.

Conclusion. Our forecasting algorithm can identify the risk groups and predict the development of AF in patients with MS and PACs.

 

About the Authors

A. I. Olesin
Metchnikoff North-Western State Medical University
Russian Federation

Dr. Alexander I. Olesin, MD, DSc, Professor, Department of Clinical Therapy and Cardiology

41, Kirochnaya Street, St. Petersburg, 191015



I. V. Konstantinova
Metchnikoff North-Western State Medical University
Russian Federation

Dr. Irina V. Konstantinova, MD, PhD, Associate Professor, Department of Clinical Therapy and Cardiology

41, Kirochnaya Street, St. Petersburg, 191015



V. S. Ivanov
St. Elizabeth's Hospital
Russian Federation

Dr. Vladimir S. Ivanov, MD, PhD, Head of the Cardiology Unit № 2

14, Vavilovykh Street, St. Petersburg, 195257



References

1. Vyas V, Lambiase P. Obesity and Atrial Fibrillation: Epidemiology, Pathophysiology and Novel Therapeutic Opportunities. Arrhythm Electrophysiol Rev. 2019;8(1):28-36. https://doi.org/10.15420/aer.2018.76.2

2. Shamloo AS, Dagres N, Arya A, Hindricks G. Atrial fbrillation: A review of modifable risk factors and preventive strategies. Rom J Intern Med. 2019;57(2):99-109. https://doi.org/10.2478/rjim-2018-0045

3. Zheng Y, Xie Z, Li J, Chen C, Cai W, Dong Y, Xue R, Liu C. Meta-analysis of metabolic syndrome and its individual components with risk of atrial fbrillation in different populations. BMC Cardiovasc Disord. 2021;21(1):90-101. https://doi.org/10.1186/s12872-021-01858-1

4. Olesin AI, Litvinenko VA, Al-Barbari AV, Konstantinova IV, Smolin ZYu, Prosyni-kova ON. Atrial fbrillation onset risk in patient with metabolic syndrome: prospec-tive study. Russian Journal of Cardiology. 2014;12(116):25-30. (In Russ). http://dx.doi.org/10.15829/1560-4071-2014-12-25-30

5. Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Moser CB, Sinner MF, Sotoodehnia N, Fontes JD, Janssens ACJW, Kronal RA, Magnani JW, Witteman JC, Chamberlain AM, Lubitz SA, Schnabel RB, Agarwal SK, McManus DD, Ellinor PT, Larson MG, Burke GL, Launer LJ, Hoffman A, Levy D, Gottdiner JS, Kaab S, Couper D, Harris TB, Soliman EZ, Stricker BHC, Gudnason V, Heckbert SR, Benjamain EJ. Simple risk model predicts incidence of atrial fbrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc. 2013;2(2):e000102. https://doi.org/10.1161/JAHA.112.000102

6. Himmelrech JCL, Veeler L, Lucassen WAM, Schnabel RB, Rienstra M, van Weert HCP, Harskamp RE. Prediction models for atrial fbrillation applicable in the community: a systematic review and meta-analysis. Europace. 2020;22(5):684-694. https://doi.org/10.1093/europace/euaa005

7. Himmelrech JCL, Lucassen WAM, Harskamp RE, Aussems C, van Weert HCPM, Nielen MM. CHARGE-AF in a national routine primary care electronic health records database in the Netherlands: validation for 5-year risk of atrial fbrillation and implications for patient selection in atrial fbrillation screening. Open Heart. 2021;8(1):e001459. https://doi.org/10.1136/openhrt-2020-001459

8. Litvinenko VA, Olesin AI, Konstantinova IV, Al-Barbary AV. Method for determine risk development of atrial fbrillation in patients with atrial exstrasystoles. Patent RUS №2556602.10.07.15. Byul №19. (In Russ). Available at: http://www.fndpatent.ru/patent/255/2556602.html Accessed: 10 May, 2022.

9. Zipes DP, Libby P, Bonow RO. Braunwald's Heart Disease E-Book: A Textbook of Cardiovascular Medicine 11th Edition, Kindle Edition. Elsevier Science; 2018. 5174 р.

10. Olesin AI, Konstantinova IV, Zueva YS. A method for predicting the development of atrial fbrillation in patients with atrial extrasystole. Patent RUS №2763978. 12.01.22. Byul №2. (In Russ). Available at: http://www.fndpatent.ru/patent/255/2763978 html Accessed: 10 May, 2022.

11. Kornej J, Börschel C, Benjamin E, Schnabel RB. Epidemiology of Atrial Fibrillation in the 21stCentury, Novel Methods and New Insights. Circ Res. 2020;127(1): 4-20. https://doi.org/10.1161/CIRCRESAHA.120.316340

12. Mazur ES, Mazur VV, Bazhenov ND, Kolbasnicov SV, Nilova OV. Epicardial obesity and atrial fbrillation: emphasis on atrial fat depot. Obesity and metabolism. 2020;17(3):316-325. (In Russ). https://doi.org/10.14341/omet12614

13. Deb B, Ganesan P, Feng R, Narayan SM. Identifying Atrial Fibrillation Mechanisms for Personalized Medicine. J Clin Med. 2021;10(23):5679. https://doi.org/10.3390/jcm10235679

14. Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells. 2021;10(10):2605. https://doi.org/10.3390/cells10102605

15. Matei LL, Siliste C, Vinereanu D. Modifable Risk Factors and Atrial Fibrillation: the Quest for a Personalized Approach. Maedica (Bucur). 2021;16(1):88-96. https://doi.org/10.26574/maedica.2020.16.1.88

16. Mahajam R, Lau DH, Brooks AG, Shipp NJ, Wood JPM, Manavis J, Samuel CS, Patel KP, Finnie JW, Alasady M, Kalman J, Sanders P. Atrial Fibrillation and Obesity: Reverse Remodeling of Atrial Substrate With Weight Reduction. JACC Clin Electrophysiol. 2021;7(5):630-641. https://doi.org/10.1016/j.jacep.2020.11.015

17. Olesin AI, Konstantinova IV. The possibility of using pharmacological antiarrhythmic therapy and modulated kinesotherapy as a primary prevention of atrial fbrillation in patients with metabolic syndrome and with premature atrial complexes: prospective study. Complex Issues of Cardiovascular Diseases. 2022;11(1):17-25. (In Russ). https://doi.org/10.17802/2306-1278-2022-11-1-17-25


Review

For citations:


Olesin A.I., Konstantinova I.V., Ivanov V.S. Patients with metabolic syndrome and premature atrial contractions: predicting the atrial fbrillation onset. Fundamental and Clinical Medicine. 2022;7(2):75-83. (In Russ.) https://doi.org/10.23946/2500-0764-2022-7-2-75-83

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)