Preview

Fundamental and Clinical Medicine

Advanced search

Contribution of polymorphic variants of the NFKB1 transcription factor gene to the development of multifactorial diseases with an infammatory component

https://doi.org/10.23946/2500-0764-2022-7-2-112-124

Abstract

NFKB1 — a product of the same-name gene – is a transcription factor that regulates the expression of target genes which encode a wide range of proteins with properties essential for functioning of the body. Numerous studies confrmed the NFKB1 gene's contribution of the polymorphism to the processes of adaptation to climatic and geographical conditions, protection from infectious agents, as well as the pathogenesis of multifactorial diseases. In the materials supplied with the article is a summary of the results of published population-genetic and cohort studies of NFKB1. Summary data on the requencies of NFKB1 gene alleles (rs28362491, rs230521, rs4648068, rs3774937, rs3774959) in the population of Europe, Africa, South and East Asia, America, Eastern Russia and Siberia (according to the open databases from 1000 Genomes and Siberian projects) illustrates the pronounced genetic differentiation of world populations by polymorphic variants of NFKB1, which indirectly confrms their selective role. The signifcance of the aforementioned polymorphisms in the etiology and pathogenesis in a number of socially signifcant nosological forms was studied according to an analysis of materials from articles posted on NCBI platform from 2008 to 2021. As a result of deconstructing the data, it was found that changes in the structure of the promoter (del) and introns (SNP polymorphism) are able to modify the activity of the transcription factor NFKB1, through a change in the expression of the gene and the activity of its product. This information forms an ambiguous picture of associations of the NFKB1 gene polymorphic variants with oncological (ovarian, stomach, breast, bladder, colorectal cancer, Hodgkin's lymphoma, melanoma), cardiovascular (coronary heart disease, acute coronary syndrome, myocardial infarction, varicose veins), autoimmune and chronic infammatory diseases (obesity, chronic hepatitis, rheumatoid arthritis, Behcet's disease, psoriasis, acute infammatory reactions to the graft). Ambiguity of the established associative relations could be due to the modifying infuence of ethnic and population characteristics, as well as intensity of the infuence of phlogogenic factors. Nevertheless, the summarized data and generalizations published in the materials of the article can be used in development of a strategy for basic and screening studies in context of the etiology and pathogenesis of multifactorial diseases.

About the Authors

A. V. Meyer
Kemerovo State Medical University
Russian Federation

Dr. Alina V. Meyer, PhD, Associate Professor of the Department of Molecular and Cellular Biology

22а, Voroshilova Street, Kemerovo, 650056



T. A. Tolochko
Kemerovo State Medical University
Russian Federation

Tatiana A. Tolochko, Senior Lecturer, Department of Morphology and Forensic Medicine

22а, Voroshilova Street, Kemerovo, 650056



E. A. Astafyeva
Kemerovo State Medical University
Russian Federation

Eugeniya A. Astaf’eva, Assistant, Department of Morphology and Forensic Medicine

22а, Voroshilova Street, Kemerovo, 650056



M. V. Ulyanova
Kemerovo State Medical University
Russian Federation

Dr. Marina V. Ulyanova, PhD, Associate Professor of the Department of Molecular and Cellular Biology

22а, Voroshilova Street, Kemerovo, 650056



D. O. Imekina
Kemerovo State Medical University
Russian Federation

Darya O. Imekina, Assistant, Department of Molecular and Cellular Biology

22а, Voroshilova Street, Kemerovo, 650056



M. B. Lavryashina
Kemerovo State Medical University
Russian Federation

Dr. Marya B. Lavryashina, Doctor of Biological Science, Head of Department of Molecular and Cellular Biology

22а, Voroshilova Street, Kemerovo, 650056



References

1. Galimzyanov HM, Trizno NN, Lopuhin YUM, Bodrova TA, Notkins AL, Suchkova EN, Trizno MN, Levitan ME, Pal'cev MA, Suchkov SV. Predictive-preventive and personalized medicine as a new branch of healthcare and its prospects. Astrakhan Medical Journal. 2013;8(1):64-70. (In Russ).

2. Titova ON, Kuzubova NA, Lebedeva ES. The role of the hypoxic signaling pathway in cellular adaptation to hypoxia. RMZH. Medicinskoe obozrenie. 2020;4(4):207-213. (In Russ). https://doi.org/10.32364/2587-6821-2020-4-4-207-213

3. Borghaei RC, Gorski G, Seutter S, Chun J, Khaselov N, Scianni S. Zinc-binding protein-89 (ZBP-89) cooperates with NF-κB to regulate expression of matrix metalloproteinases (MMPs) in response to infammatory cytokines. Biochem Biophys Res Commun. 2016;471(4):503-509. https://doi.org/10.1016/j.bbrc.2016.02.045

4. Prescott JA, Mitchell JP, Cook SJ. Inhibitory feedback control of NFκB signalling in health and disease. Biochem J. 2021;478(13):2619- 2664. https://doi.org/10.1042/BCJ20210139

5. Angom RS, Zhu J, Wu A, Sumitra M, Pham V, Dutta S, Wang E, Madamsetty VS, Perez-Cordero G, Huang H-S, Mukhopadhyay D, Wang Y. LCC-09, a Novel Salicylanilide Derivative, Exerts Anti-Infammatory Effect in Vascular Endothelial Cells. J Infamm Res. 2021;14:4551- 4565. https://doi.org/10.2147/JIR.S305168

6. Arabidze GG. Clinical immunology of atherosclerosis – from the theory to practice. Journal of Atherosclerosis and Dyslipidemias 2013;1(10):4-19 (In Russ).

7. Serasanambati M, Chilakapati SR. Function of Nuclear Factor Kappa B (NF-kB) in human diseases-A Review. South Indian Journal of Biological Sciences. 2016;2(4):368. https://doi.org/10.22205/sijbs/2016/v2/i4/103443

8. Bogdanov AN, Kamilova TA, Tsygan EN. The role of apoptosis in pathogenesis of rheumatoid arthritis. Scientifc and Practical Rheumatology. 2005;43(6):56-62. (In Russ).

9. Caviedes А, Lafourcade С, Soto С, Wyneken U. BDNF/NF-κB Signaling in the Neurobiology of Depression. Current Pharmaceutical Design. 2017;23(21):3154-3163. https://doi.org/10.2174/1381612823666170111141915

10. Astrahanova TA, Urazov MD, Usenko AV, Mitroshina EV, Mishhenko TA, Shhelchkova NA, Vedunova MV. BDNF-mediated regulation of the brain mitochondria functional state in hypoxia. Sovremennye tehnologii v medicine. 2018;10(3):88-94. (In Russ). https://doi.org/10.17691/stm2018.10.3.10

11. Zhang L, Zhao J, Gurkar A, Niedernhofer LJ, Robbins PD. Methods to Quantify the NF-κB Pathway During Senescence. Methods Mol Biol. 2019;1896:231-250. https://doi.org/10.1007/978-1-4939-8931-7_18

12. Song L, Li J, Zhang D, Liu Z, Ye J, Zhan Q, Shen H, Whiteman M, Huang C. IKKβ programs to turn on the GADD45α–MKK4–JNK apoptotic cascade specifcally via p50 NF-κB in arsenite response. J Cell Biol. 2006;175(4):607-617. https://doi.org/10.1083/jcb.200602149

13. Huang T, Kang W, Zhang B, Wu F, Dong Y, Tong J H M, Yang W, Zhou Y, Zhang L, Cheng ASL, Yu J, To KF. miR-508-3p concordantly silences NFKB1 and RELA to inactivate canonical NF-κB signaling in gastric carcinogenesis. Molecular Cancer.2016;15(1). https://doi.org/10.1186/s12943-016-0493-7

14. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2020;8(3):287-297. https://doi.org/10.1016/j.gendis.2020.06.005

15. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227-41. https://doi.org/10.1002/wsbm.1331

16. NFKB1 nuclear factor kappa B subunit 1 [Homo sapiens (human)]. Gene ID: 4790. 2022. Available at: https://www.ncbi.nlm.nih.gov/gene/4790. Accessed: May 8, 2022.

17. rs230521 RefSNP Report. 2022. Available at: https://www.ncbi.nlm.nih.gov/snp/rs230521. Accessed: May 8, 2022.

18. rs4648068. RefSNP Report. 2022. Available at: https://www.ncbi.nlm.nih.gov/snp/rs4648068. Accessed: May 8, 2022.

19. rs28362491. RefSNP Report. 2022. Available at: https://www.ncbi.nlm.nih.gov/snp/rs28362491. Accessed: May 8, 2022.

20. rs3774937 RefSNP Report. 2022. Available at: https://www.ncbi.nlm.nih.gov/snp/rs3774937. Accessed: May 8, 2022.

21. rs3774959 RefSNP Report. 2022. Available at: https://www.ncbi.nlm.nih.gov/snp/rs3774959. Accessed: May 8, 2022.

22. Chen LP, Cai PS, Liang H.B. Association of the genetic polymorphisms of NFKB1 with susceptibility to ovarian cancer. Genet Mol Res. 2015;14(3):8273-8282. https://doi.org/10.4238/2015.July.27.15

23. Lu R, Gao X, Chen Y. Ni J, Yu Y, Li S, Guo L. Association of an NFKB1 intron SNP (rs4648068) with gastric cancer patients in the Han Chinese population. BMC Gastroenterol. 2012;12:87. https://doi.org/10.1186/1471-230X-12-87

24. Wang Y, Wu B, Zhang M, Miao H, Sun J. Signifcant association between rs28362491 polymorphism in NF-κB1 gene and coronary artery disease: a meta-analysis. BMC Cardiovasc Disord. 2020;20(1):278. https://doi.org/10.1186/s12872-020-01568-0

25. Luo JY, Li YH, Fang BB, Tian T, Liu F, Li XM, Gao XM, Yang Yn. NFKB1 gene rs28362491 ins/del variation is associated with higher susceptibility to myocardial infarction in a Chinese Han population. Scientifc Reports. 2020;10(1):19518. https://doi.org/10.1038/s41598-020-72877-9

26. Li X, Gao Y, Zhou H, Xu W, Li P, Zhou J, Xu T, Yu B, Xu Z, Zou Q, Yin C, Cai H, Shen W. The relationship between functional promoter -94 ins/del ATTG polymorphism in NF-κ B1 gene and the risk of urinary cancer. Cancer biomarkers. 2016;16(1):11-17. https://doi.org/10.3233/CBM-150536

27. Escobar GF, Arraes JA, Bakos L, Ashton-Prolla P, Giugliani R, Callegari-Jacques SM, Santos SE, Bakos RM. Polymorphisms in CYP19A1 and NFKB1 genes are associated with cutaneous melanoma risk in southern Brazilian patients. Melanoma Research. 2016;26(4):348-353. https://doi.org/10.1097/CMR.0000000000000267

28. Elkhawaga SY, Gomaa MH, Elsayed MM, Ebeed AA. NFKB1 promoter -94 insertion/deletion ATTG polymorphism (rs28362491) is associated with severity and disease progression of rheumatoid arthritis through interleukin-6 levels modulation in Egyptian patients. Clinical Rheumatology. 2021;40(7):2927-2937. https://doi.org/10.1007/s10067-021-05584-z

29. Hamadou I, Garritano S, Romanel A, Naimi D, Hammada T, Demichelis F. Inherited variant in NFκB‐1 promoter is associated with increased risk of IBD in an Algerian population and modulates SOX9 binding. Cancer Reports. 2020;3(3):е1240. https://doi.org/10.1002/cnr2.1240

30. Yenmis G, Soydas T, Arkan H, Tasan E, Kanigur Sultuybek G. Genetic Variation in NFKB1 Gene Infuences Liver Enzyme Levels in Morbidly Obese Women. Arch Iran Med. 2018;21(1):13-18.

31. Li HT, Gao L, Shen Z, Li CY, Li K, Li M, Lv Y, Li CX, Gao T, Liu YF. Association study of NFKB 1 and SUMO 4 polymorphisms in Chinese patients with psoriasis vulgaris. Arch Dermatol Res. 2008;300(8):425- 433. https://doi.org/10.1007/s00403-008-0843-4

32. Jin SY, Luo JY, Li XM, Liu F, Ma YT, Gao XM, Yang YN. NFKB1 gene rs28362491 polymorphism is associated with the susceptibility of acute coronary syndrome. Bioscience Reports. 2019;39(4):BSR20182292. https://doi.org/10.1042/BSR20182292

33. Mohd Suzairi MS, Tan SC, Ahmad Aizat AA, Mohd Aminudin M, Siti Nurfatimah MS, Andee ZD, Ankathil R. The functional -94 insertion/ deletion ATTG polymorphism in the promoter region of NFKB1 gene increases the risk of sporadic colorectal cancer. Cancer epidemiology. 2013;37(5):634-638. https://doi.org/10.1016/j.canep.2013.05.007

34. Fakhir F, Lkhider M, Badre W, Alaoui R, Pineau P, Ezzikouri S, Benjelloun S. The -94Ins/DelATTG polymorphism in NFκB1 promoter modulates chronic hepatitis C and liver disease progression. Infect Gen Evol. 2016;39:141-146. https://doi.org/10.1016/j.meegid.2016.01.023

35. Kuba A, Raida L, Mrazek F, Schneiderová P, Kriegová E, Langová K, Furst T, Furstova J, Faber E, Papajík T. NFKB1 gene single-nucleotide polymorphisms: implications for graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2020;99(3):609-618. https://doi.org/10.1007/s00277-020-03935-5

36. Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G. The NF-kBmediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006;13(5):712-729. https://doi.org/10.1038/sj.cdd.4401865

37. Hsu FT, Chiang IT, Wang WS. Induction of apoptosis through extrinsic/intrinsic pathways and suppression of ERK/NF-κB signalling participate in anti-glioblastoma of imipramine. J Cell Mol Med. 2020;24(7):3982-4000. https://doi.org/10.1111/jcmm.15022

38. Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol. 2017;120:141-150. https://doi.org/10.1016/j.critrevonc.2017.11.001

39. Schonfeld SJ, Bhatti P, Brown EE, Linet MS, Simon SL, Weinstock RM, Hutchinson АА, Stovall М, Preston DL, Alexander ВН, Doody ММ, Sigurdson AJ. Polymorphisms in oxidative stress and infammation pathway genes, low-dose ionizing radiation, and the risk of breast cancer among US radiologic technologists. Cancer Сauses Сontrol. 2010;21(11):1857-1866.https://doi.org/10.1007/s10552-010-9613-7

40. Ghali RM, Mahjoub S, Zaied S, Bhiri H, Bahia W, Mahjoub T, Almawi WY. Association of Genetic Variants in NF-kB with Susceptibility to Breast Cancer: a Case Control Study. Pathol Oncol Res. 2018;25(4):1395-1400. https://doi.org/10.1007/s12253-018-0452-2

41. Yu Y, Liu H, Jin M, Zhang M, Pan Y, Zhang S, Li Q, Chen K. The Joint Association of REST and NFKB1 Polymorphisms on the Risk of Colorectal Cancer. Ann Hum Genet. 2012;76(4):269-276. https://doi.org/10.1111/j.1469-1809.2012.00709.x

42. Seufert BL, Poole EM, Whitton JA, Xiao L, Makar K, Campbell PT, Kulmacz RJ, Baron JA, Newcomb PA, Slattery ML, Potter JD, Ulrich CM. IκBKβ and NFκB1, NSAID use and risk of colorectal cancer in the Colon Cancer Family Registry. Carcinogenesis. 2013;34(1):79-85. https://doi.org/10.1093/carcin/bgs296

43. Chang ET, Birmann BM, Kasperzyk JL, Conti DV, Kraft P, Ambinder RF, Zheng T, Mueller NE. Polymorphic Variation in NFKB1 and Other Aspirin-Related Genes and Risk of Hodgkin Lymphoma. Cancer Epidemiol Biomarkers Prev. 2009;18(3):976-986. https://doi.org/10.1158/1055-9965.EPI-08-1130

44. Kim HM, Oh S, Yang JY, Sun HJ, Jang M, Kang D, Son KH, Byun K. Evaluating Whether Radiofrequency Irradiation Attenuated UV-BInduced Skin Pigmentation by Increasing Melanosomal Autophagy and Decreasing Melanin Synthesis. Int J Mol Sci. 2021;22(19):10724. https://doi.org/10.3390/ijms221910724

45. Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther. 2018;183:22- 33. https://doi.org/10.1016/j.pharmthera.2017.09.003

46. Malaponte G, Signorelli SS, Bevelacqua V, Polesel J, Taborelli M, Guarneri C, Fenga C, Umezawa K, Libra M. Increased Levels of NF-kB-Dependent Markers in Cancer-Associated Deep Venous Thrombosis. PLoS One. 2015;10(7):e0132496. https://doi.org/10.1371/journal.pone.0132496

47. Shadrina AS,Voronina EN, Smetanina MA, Tsepilov YA, Sevost’ianova KS, Shevela AI, Seliverstov EI, Zakharova E, Ilyukhin EA, Kirienko AI, Zolotukhin IA, Filipenko M. Polymorphisms in infammationrelated genes and the risk of primary varicose veins in ethnic Russians. Immunol Res. 2017;66(1):141-150. https://doi.org/10.1007/s12026-017-8981-4

48. Nikolaeva LI, Kolotvin AV, Samohodskaya LM, Sapronov GV, Makashova VV, Samokhvalov EI, Al'khovskiy SV, Grishechkin AE, Beljaeva NM, Gibadulin RA. Analysis of the infuence of genetic factors of hepatitis Сvirus and gene polymorphism in infected patients on the development of liver fbrosis. Epidemiology and infectious diseases. 2012;17(5):7-13. (In Russ). https://doi.org/10.17816/EID40683

49. Arsentieva NA, Semenov AV, Totolian AA. The role of cytokine genes polymorphism in hepatitis C virus infection. Infektsiia Immun. 2014;2(4):687. https://doi.org/10.15789/2220-7619-2012-4-687-698

50. Hatemi G, Christensen R, Bang D, Bodaghi B, Çelik AF, Fortune F, Gaudric J, Gul A, Kötter I, Leccese P, Mahr, Moots RJ, Ozguler Y, Richter JG, Saadoun D, Salvarani C, Scuderi F, Sfkakis PP, Siva A, Stanford MR, Tuğal-Tutkun İ, West R, Yurdakul S, Olivieri I, Yazici H. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann Rheum Dis. 2018;77(6):808-818. https://doi.org/10.1136/annrheumdis-2018-213225

51. Carmona FD, Martín J, González-Gay MA. Genetics of vasculitis. Curr Opin Rheumatol. 2015;27(1):10-7. https://doi.org/10.1097/BOR.0000000000000124

52. Kaya TI. Genetics of Behçet's Disease. Patholog Res Int. 2012; 2012:912589. https://doi.org/10.1155/2012/912589

53. Jiang Y, Wang H, Yu H, Li L, Xu D, Hou S, Kijlstra A, Yang P.Two Genetic Variations in the IRF8 region are associated with Behçet’s disease in Han Chinese. Scientifc Reports. 2016;6(1):19651. https://doi.org/10.1038/srep19651

54. Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;59:17-24. https://doi.org/10.1016/j.clinbiochem.2018.07.003

55. Ray-Jones H, Eyre S, Barton A, Warren RB. One SNP at a time: moving beyond GWAS in psoriasis. J Invest Dermatol. 2016;136(3):567- 573. https://doi.org/10.1016/j.jid.2015.11.025

56. Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol. 2015;64(2):313-323. https://doi.org/10.1016/j.molimm.2014.12.014

57. Harden JL, Krueger JG, Bowcock AM. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun. 2015;64:66-73. https://doi.org/10.1016/j.jaut.2015.07.008


Review

For citations:


Meyer A.V., Tolochko T.A., Astafyeva E.A., Ulyanova M.V., Imekina D.O., Lavryashina M.B. Contribution of polymorphic variants of the NFKB1 transcription factor gene to the development of multifactorial diseases with an infammatory component. Fundamental and Clinical Medicine. 2022;7(2):112-124. (In Russ.) https://doi.org/10.23946/2500-0764-2022-7-2-112-124

Views: 431


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)