Genetically modified bacteriophages creating for the treatment of infections caused by multidrug resistant bacteria (review)
https://doi.org/10.23946/2500-0764-2022-7-3-54-63
Abstract
Antibiotic resistance represents an urgent and unresolved issue due to a rapid spread of multidrug-resistance organisms (MDROs). An alternative approach is the medical use of bacteriophages which have selective and lytic activity against specific bacterial strains, in contrast to broad-spectrum antibiotics. Isolation of bacteriophages is a multi-step, tedious, and labour-intensive technique, and physiology of various bacteriophages has been vaguely studied. These drawbacks hamper the flow production of bacteriophage preparations and require a stringent quality control. Here, we review the existing literature on genetically modified bacteriophages, in particular studies which examined efficacy of such bacteriophages for the treatment of multidrug-resistant infections. Genetically modified bacteriophages showed high efficiency in patients with multidrug-resistant infections applied either as a main treatment modality or as an adjuvant therapy added to the antibiotic treatment protocols. The key advantage of genetically modified bacteriophages is broader and higher lytic activity, as they can target antibiotic resistance genes such as efflux pumps, and low immunogenicity which delays their elimination by immune cells. We propose that genetically modified bacteriophages are able to overcome the shortcomings of natural bacteriophages and can be implemented for the prevention and treatment of bacterial infections, in particular those caused by MDROs.
About the Authors
K. M. BagandovaRussian Federation
Dr. Kalimat M. Bagandova, MD, PhD student, Junior Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
E. R. Zulkarneev
Russian Federation
Dr. Eldar R. Zulkarneev, PhD, Senior Research Fellow
Building 4, 10, Pogodinskaya Street, Moscow, 119121, Russian Federation
I. A. Kiseleva
Russian Federation
Irina A. Kiseleva
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
T. E. Mizaeva
Russian Federation
Dr. Toita E. Mizaeva, MD, PhD student, Junior Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
A. M. Vorobev
Russian Federation
Dr. Alexey M. Vorobyev, MD, PhD student, Junior Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
O. G. Efimova
Russian Federation
Dr. Olga G. Efimova, MD, PhD, Leading Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
M. P. Medvedovskaya
Russian Federation
Dr. Maria P. Medvedovskaya, MD, PhD student, Junior Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
M. A. Pasivkina
Russian Federation
Dr. Maria A. Pasivkina, MD, PhD student, Junior Research Fellow, Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
A. V. Aleshkin
Russian Federation
Prof. Andrey V. Aleshkin, Corresponding Member of the Russian Academy of Sciences; DSc, Professor, Head of the Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages
10, Admirala Makarova Street, Moscow, 125212, Russian Federation
References
1. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146-1150. http://doi.org/10.1038/nbt.3043
2. Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010;28(12):591-595. http://doi.org/10.1016/j.tibtech.2010.08.001
3. Kter EM, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11(1):69-86. http://doi.org/10.2174/138920110790725401
4. Kutter EM., Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol. 2015;10(5):685-688. http://doi.org/10.2217/fmb.15.28
5. Lu TK, Collins JJ. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A. 2009;106(12):4629-4634. http://doi.org/10.1073/pnas.0800442106
6. Duplessis M, Moineau S. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol. 2001;41(2):325-336. http://doi.org/10.1046/j.1365-2958.2001.02521.x.
7. Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MT, de la FuenteNunez C, Lu TK. Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell. 2019;179(2):459-469.e9. http://doi.org/10.1016/j.cell.2019.09.015
8. Dunne M, Rupf B, Tala M, Qabrati X, Ernst P, Shen Y, Sumrall E, Heeb L, Plückthun A, Loessner MJ, Kilcher S. Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Rep. 2019;29(5):1336-1350. e4. http://doi.org/10.1016/j.celrep.2019.09.062
9. Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res. 2018;46(13):6920-6933.http://doi.org/10.1093/nar/gky544
10. Ando H, Lemire S, Pires DP, Lu TK. Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Syst. 2015;1(3):187-196. http://doi.org/10.1016/j.cels.2015.08.013
11. Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42(14):9504-9513. http://doi.org/10.1093/nar/gku628
12. Lemay ML, Tremblay DM, Moineau S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth Biol. 2017;6(7):1351-1358. http://doi.org/10.1021/acssynbio.6b00388
13. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730-733. http://doi.org/10.1038/s41591-019-0437-z
14. Huss P, Raman S. Engineered bacteriophages as programmable biocontrol agents. Curr Opin Biotechnol. 2020;61:116-121. http://doi.org/10.1016/j.copbio.2019.11.013
15. Burrowes BH, Molineux IJ, Fralick JA. Directed in Vitro Evolution of Therapeutic Bacteriophages: The Appelmans Protocol. Viruses. 2019;11(3):241. http://doi.org/10.3390/v11030241
16. Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MT, de la FuenteNunez C, Lu TK. Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell. 2019;179(2):459-469.e9. http://doi.org/10.1016/j.cell.2019.09.015
17. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345-352. http://doi.org/10.1038/nri2747
18. Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies: what cardiologists need to know. Circulation. 2013;127(22):2222-2230. http://doi.org/10.1161/CIRCULATIONAHA.113.002033
19. Ducancel F, Muller BH. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs. 2012;4(4):445-457. http://doi.org/10.4161/mabs.20776
20. Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. MAbs. 2011;3(3):243-252. http://doi.org/10.4161/mabs.3.3.15234
21. Eugster MR, Morax LS, Hüls VJ, Huwiler SG, Leclercq A, Lecuit M, Loessner MJ. Bacteriophage predation promotes serovar diversification in Listeria monocytogenes. Mol Microbiol. 2015;97(1):33-46. http://doi.org/10.1111/mmi.13009
22. Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, Boulos S, Disson O, Thouvenot P, Kilcher S, Wollscheid B, Cabanes D, Lecuit M, Gründling A, Loessner MJ. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog. 2019;15(10):e1008032. http://doi.org/10.1371/journal.ppat.1008032
23. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471-480. http://doi.org/10.1038/nrmicro2381
24. Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of Phage Sensitivity by Bacteria through Exchange of Phage Receptors. Cell. 2017;168(1-2):186-199.e12. http://doi.org/10.1016/j.cell.2016.12.003
25. Smirnov AV, Yunusova AM, Lukyanchikova VA, Battulin NR. CRISPR/Cas9, a universal tool for genomic engineering. Vavilovskii Zhurnal Genetiki i Selektsii=Vavilov Journal of Genetics and Breeding. 2016;20(4):493-510. 2016;20(4):493-510. (In Russ). http://doi.org/10.18699/VJ16.175
26. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-1712. http://doi.org/10.1126/science.1138140
27. Shen J, Zhou J, Chen GQ, Xiu ZL. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9. J Virol. 2018;92(17):e00534-18. http://doi.org/10.1128/JVI.00534-18
28. Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11(1):42-44. http://doi.org/10.4161/rna.27766
29. Box AM, McGuffie MJ, O'Hara BJ, Seed KD. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. J Bacteriol. 2015;198(3):578-590. http://doi.org/10.1128/JB.00747-15
30. Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42(14):9504-9513. http://doi.org/10.1093/nar/gku628
31. Lemay ML, Tremblay DM, Moineau S. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9. ACS Synth Biol. 2017;6(7):1351-1358. http://doi.org/10.1021/acssynbio.6b00388
32. Tao P, Wu X, Tang WC, Zhu J, Rao V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth Biol. 2017;6(10):1952-1961. http://doi.org/10.1021/acssynbio.7b00179
33. Schilling T, Dietrich S, Hoppert M, Hertel R. A CRISPR-Cas9-Based Toolkit for Fast and Precise In Vivo Genetic Engineering of Bacillus subtilis Phages. Viruses. 2018;10(5):241. http://doi.org/10.3390/v10050241
34. Shen J, Zhou J, Chen GQ, Xiu ZL. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9. J Virol. 2018;92(17):e00534-18. http://doi.org/10.1128/JVI.00534-18
35. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146-1150. http://doi.org/10.1038/nbt.3043
36. Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11(1):42-44. http://doi.org/10.4161/rna.2776
37. Marinelli LJ, Hatfull GF, Piuri M. Recombineering: A powerful tool for modification of bacteriophage genomes. Bacteriophage. 2012;2(1):5-14. http://doi.org/10.4161/bact.18778
38. Marinelli LJ, Piuri M, Swigonová Z, Balachandran A, Oldfield LM, van Kessel JC, Hatfull GF. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One. 2008;3(12):e3957. http://doi.org/10.1371/journal.pone.0003957
39. Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4(2):206-223. http://doi.org/10.1038/nprot.2008.227
40. Thomason LC, Oppenheim AB, Court DL. Modifying bacteriophage lambda with recombineering. Methods Mol Biol. 2009;501:239-251. http://doi.org/10.1007/978-1-60327-164-6_21
41. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730-733. http://doi.org/10.1038/s41591-019-0437-z
Review
For citations:
Bagandova K.M., Zulkarneev E.R., Kiseleva I.A., Mizaeva T.E., Vorobev A.M., Efimova O.G., Medvedovskaya M.P., Pasivkina M.A., Aleshkin A.V. Genetically modified bacteriophages creating for the treatment of infections caused by multidrug resistant bacteria (review). Fundamental and Clinical Medicine. 2022;7(3):54-63. (In Russ.) https://doi.org/10.23946/2500-0764-2022-7-3-54-63