Cytogenetic techniques in current biomedical research. PART III: numerical alterations of human karyotype
https://doi.org/10.23946/2500-0764-2022-7-3-85-96
Abstract
Numerical abnormalities of karyotype are the result of genome mutations. Unlike gene and chromosomal abnormalities, genome mutations do not disrupt the structure of DNA or chromosomes. The cause of numerical changes in the karyotype is a violation of the mechanism of chromosome segregation during meiosis or mitosis. Like other mutations, genome mutations are a natural mechanism for increasing of genetic diversity in offspring. At the same time, humans usually have negative effects of any numerical deviations from the norm, for this reason, cytogenetic examination of aneuploidies is an important diagnostic tool in medical genetics.
A change in the number of sex chromosomes is usually not lethal. The spectrum of detected deviations in the carrier is from inconstant impairment of reproduction but a normal phenotype to malformations of some internal organs, infertility and severe intellectual disabilities. Aneuploidies of autosomes are always a threat to life and health. Only autosomal trisomies on chromosomes 13, 18, 21 and 22 are compatible with live birth, there are solitary reports of the birth of children with polyploidies. At the same time, the prognosis of life is relatively favorable only in the case of trisomy 21, leading to the formation of Down syndrome. Other aneuploidies usually lead to spontaneous termination of pregnancy in the early stages and are discovered in samples of abortion material.
In this regard, cytogenetic analysis of chromosomal aneuploidies is used to establish the genetic cause of anomalies and malformations in the postnatal period, delays in speech and psychomotor development, reproduction disorders in adults. Of particular importance is the cytogenetic analysis of the karyotype of embryos in the prenatal period. The proposed lecture analyzes the mechanism of formation of genomic mutations and their diversity. The possible medical consequences of the presence of various types of aneuploidies are considered. To the reader attention is offered syndromes associated with a change in the number of chromosomes in the karyotype. The description is illustrated by real images of patient karyotypes.
The lecture is aimed primarily at students of medical and biological specialties, young specialists who plan to use cytogenetic research methods in their practical activities, and doctors who are faced with the need to analyze and interpret the results of cytogenetic analysis. To assimilate the material under discussion, it is recommended to familiarize yourself with the previous lecture of the cycle.
About the Authors
A. N. VolkovRussian Federation
Alexey N. Volkov, PhD, associate professor, Department of Biology, Genetics and Parasitology
22a, Voroshilova Street, Kemerovo, 650056, Russian Federation
O. I. Rytenkova
Russian Federation
Dr. Oksana I. Rytenkova, MD, doctor - laboratory geneticist, medicalgenetic laboratory
22, Oktyabr’skiy Prospect, Kemerovo, 650066, Russian Federation
References
1. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493-504. https://doi.org/10.1038/nrg3245
2. Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn. 2021;41(5):620-630. https://doi.org/10.1002/pd.5927
3. Thomas C, Cavazza T, Schuh M. Aneuploidy in human eggs: contributions of the meiotic spindle. Biochem Soc Trans. 2021;49(1):107-118 https://doi.org/10.1042/BST20200043
4. Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA. Insights about variation in meiosis from 31,228 human sperm genomes. Nature. 2020;583(7815):259-264. https://doi:10.1038/s41586-020-2347-0
5. Shi Q, Qiu Y, Xu C, Yang H, Li C, Li N, Gao Y, Yu C. Next-generation sequencing analysis of each blastomere in good-quality embryos: insights into the origins and mechanisms of embryonic aneuploidy in cleavage-stage embryos. J Assist Reprod Genet. 2020;37(7):1711-1718. https://doi.org/10.1007/s10815-020-01803-9
6. Berglund A, Viuff MH, Skakkebaek A, Chang S, Stochholm K, Gravholt CH. Changes in the cohort composition of Turner syndrome and severe non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: a nationwide cohort study. Orphanet J Rare Dis. 2019;14(1):16. https://doi.org/10.1186/s13023-018-0976-2
7. Shiraishi K, Matsuyama H. Klinefelter syndrome: From pediatrics to geriatrics. Reprod Med Biol. 2019;18(2):140-150. https://doi.org/10.1002/rmb2.12261
8. Akcan N, Poyrazoğlu Ş, Baş F, Bundak R, Darendeliler F. Klinefelter syndrome in childhood: variability in clinical and molecular findings. J Clin Res Pediatr Endocrinol. 2018;10(2):100-107. https://doi.org/10.4274/jcrpe.5121
9. Volkov AN, Rytenkova OI, Lysenko DI, Lugovoy KA. Cytogenetics of reproductive disorders in men. Medicine in Kuzbass. 2017;16(1):18-23. (In Russ).
10. Bouw N, Swaab H, Tartaglia N. The impact of sex chromosome trisomies (XXX, XXY, XYY) on early social cognition: social orienting, joint attention, and theory of mind. Arch Clin Neuropsychol. 2022;37(1):63-77. https://doi.org/10.1093/arclin/acab042
11. Chen W, Bai MZ, Yang Y, Sun Di, Wu S, Sun J, Wu Y, Feng Y, Wei Y, Chen Z, Zhang Z. ART strategies in Klinefelter syndrome. J Assist Reprod Genet. 2020;37(9):2053-2079. https://doi.org/10.1007/s10815-020-01818-2
12. Hutaff-Lee C, Bennett E, Howell S, Tartaglia N. Clinical developmental, neuropsychological, and social emotional features of Turner syndrome. Am J Med Genet C Semin Med Genet. 2019;181(1):126-134. https://doi.org/10.1002/ajmg.c.31687
13. Huang AC, Olson SB, Maslen CL. A Review of recent developments in Turner syndrome research. J Cardiovasc Dev Dis. 2021;8(11):138. https://doi.org/10.3390/jcdd8110138
14. Samango-Sprouse C, Kırkızlar E, Hall MP, Lawson P, Demko Z, Zneimer SM. Incidence of X and Y chromosomal aneuploidy in a large child bearing population. PLoS ONE. 2016;11(8):e0161045. http://doi.org/10.1371/journal.pone.0161045
15. Urbanus E, Swaab H, Tartaglia N, Cordeiro L. The behavioral profile of children aged 1–5 years with sex chromosome trisomy (47,XXX, 47,XXY, 47, XYY). Am J Med Genet C Semin Med Genet. 2020;184(2):444-455. https://doi.org/10.1002/ajmg.c.31788
16. Davis SM, Bloy L, Roberts TPL, Kowal K, Alston A, Tahsin A, Truxon A, Ross JL. Testicular function in boys with 47,XYY and relationship to phenotype. Am J Med Genet C Semin Med Genet. 2020;184(2):371-385. https://doi.org/10.1002/ajmg.c.31790
17. Zhang X, Liu X, Xi Q, Zhu H, Li L, Liu R, Yu Y. Reproductive outcomes of 3 infertile males with XYY syndrome: Retrospective case series and literature review. Medicine (Baltimore). 2020;99(9):e19375. http://doi.org/10.1097/MD.0000000000019375
18. Otter M, Schrander-Stumpel C, Curfs L. Triple X syndrome: a review of the literature. Eur J Hum Genet. 2010;18(3):265-271. http://doi.org/10.1038/ejhg.2009.109
19. Volkov AN, Rytenkova OI, Babarykina TA, Lysenko DI. The cytogenetic diagnostic of chromosome anomalies under non-developing pregnancy. Russian Clinical Laboratory Diagnostics. 2017;62(9):553-556. (In Russ). http://doi.org/10.18821/0869-2084-2017-62-9-553-556
20. Volkov AN, Nacheva LV Hypertriploidy as a cause of early embryonic arrest. Fundamental and Clinical Medicine. 2020;5(1):99-102. (In Russ). https://doi.org/10.23946/2500-0764-2020-5-1-99-102
21. Heinrich T, Nanda I, Rehn M, Zollner U, Frieauff E, Wirbelauer J, Grimm T, Schmid M. Live-born trisomy 22: patient report and review. Mol Syndromol. 2012;3(6):262-269. http://doi.org/10.1159/000346189
22. Bull MJ. Down syndrome. N Engl J Med. 2020;382(24):2344-2352. http://doi.org/10.1056/NEJMra1706537
23. Landes SD, Stevens JD, Turk MA, Cause of death in adults with Down syndrome in the US. Disabil Health J. 2020;13(4):100947. http://doi.org/10.1016/j.dhjo.2020.100947
24. Khan F, Jafri I. Characterization of a 16-year-old long-time survivor of Edwards syndrome. Cureus. 2021;13(5):e15205. http://doi.org/10.7759/cureus.15205
25. Peroos S, Forsythe E, Pugh JH, Arthur-Farraj P, Hodes D. Longevity and Patau syndrome: what determines survival? BMJ Case Reports. 2012;2012:bcr0620114381. http://doi.org/10.1136/bcr-06-2011-4381
26. Imataka G, Suzumura H, Arisaka O. Clinical features and survival in individuals with trisomy 18: a retrospective one-center study of 44 patients who received intensive care treatments. Mol Med Rep. 2016;139(3):2457-2466. http://doi.org/10.3892/mmr.2016.4806
27. Goel N, Morris JK, Tucker D, de Walle HEK, Bakker MK. Trisomy 13 and 18 – prevalence and mortality – a multi-registry population based analysis. Am J Med Genet A. 2019;179(12):2382-2392. http://doi.org/10.1002/ajmg.a.61365
28. Xu C, Cai X, Chen S. Comprehensive noninvasive prenatal screening for pregnancies with elevated risks of genetic disorders: protocol for a prospective, multicentre study. BMJ Open. 2021;11(8):e053617. http://doi.org/10.1136/bmjopen-2021-053617
29. Martin L, Gitsels-van der Wal JT, Bax CJ, Pieters MJ, Reijerink-Verheij J, Galjaard R-J. Nationwide implementation of the noninvasive prenatal test: Evaluation of a blended learning program for counselors. PLoS ONE. 2022;17(5):e0267865. https://doi.org/10.1371/journal. pone.0267865
30. Jacobs M, Cooper S-A, McGowan R, Nelson SM, Pell JP. Pregnancy outcome following prenatal diagnosis of chromosomal anomaly: a record linkage study of 26,261 pregnancies. PLoS ONE. 2016;11(12):e0166909. http://doi.org/10.1371/journal.pone.0166909
Review
For citations:
Volkov A.N., Rytenkova O.I. Cytogenetic techniques in current biomedical research. PART III: numerical alterations of human karyotype. Fundamental and Clinical Medicine. 2022;7(3):85-96. (In Russ.) https://doi.org/10.23946/2500-0764-2022-7-3-85-96