Preview

Фундаментальная и клиническая медицина

Расширенный поиск

Основные аспекты создания in vitro клеточнозаселенных сосудистых протезов

https://doi.org/10.23946/2500-0764-2022-7-4-100-109

Полный текст:

Аннотация

Традиционная сосудистая хирургия основывается на реконструкции окклюзированных сосудов с использованием аутологичных трансплантатов. Отсутствие донорских сосудов у определенной когорты пациентов делает разработку тканеинженерных сосудистых протезов малого диаметра весьма перспективным направлением. Решением может стать разработка сосудистых протезов из биодеградируемых полимеров с заданной скоростью деградации и, как следствие, возможностью запрограммированного адаптивного роста протеза. Такой полимерный каркас выполняет функцию направляющей матрицы для организации новообразованных тканей пациента с постепенным полным ремоделированием протеза. Его замещение новообразованной сосудистой тканью позволит рассчитывать на то, что оперативное вмешательство будет выполнено единожды с последующим полным восстановлением структуры собственного органа. Вместе с тем эффективная эндотелиализация является важным аспектом проходимости сосудистых протезов диаметром менее 5 мм в условиях низкой скорости кровотока в протезируемом сосуде. В данном обзоре описаны два подхода к стимулированию эндотелизации: первый основан на биофункционализации поверхности различными молекулами клеточной адгезии и использовании внутренней среды организма в качестве биореактора. Такой подход может эффективно ускорить селективное привлечение эндотелиальных клеток. В основу второго подхода легла идея создания сосудистого протеза с готовой к моменту имплантации эндотелиальной выстилкой, сформированной in vitro. Разработка клеточнозаселенных сосудистых протезов базируется на трех основных этапах: выборе полимера для изготовления 3D матрикса, получении культуры эндотелиальных клеток, модулировании механических стимулов. Помимо заселения внутренней поверхности протезов клетками необходимо адаптировать их к потоку, что сможет предотвратить частичное смывание эндотелиальных клеток после имплантации. Как правило, для оптимизации адгезии проводят модификацию поверхности белками внеклеточного матрикса. Эффективная адгезия также достигается посредством адаптации клеток к внешнему локальному стрессу посредством имитации условий естественного кровотока. Поэтому при моделировании биомеханических стимулов часто используется показатели нижней границы физиологической нормы напряжения сдвига. Устойчивые механические стимулы адаптируют эндотелиальные клетки к потоку, а в случае использования прогениторных клеток – способствуют дифференцировке к зрелому фенотипу.

Об авторах

М. Ю. Ханова
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

Ханова Марьям Юрисовна, младший научный сотрудник лаборатории клеточных технологий

650002, г. Кемерово, б-р Сосновый, д. 6



Л. В. Антонова
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

Антонова Лариса Валерьевна, доктор медицинских наук, заведующая лабораторией клеточных технологий

650002, г. Кемерово, б-р Сосновый, д. 6



Список литературы

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29322. https://doi.org/10.1161/CIR.0000000000000152

2. Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med. 2021;7:592361. https://doi.org/10.3389/fcvm.2020.592361

3. Pashneh-Tala S, MacNeil S, Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. Tissue Eng Part B Rev. 2016;22(1):68-100. https://doi.org/10.1089/ten.teb.2015.0100

4. Jana S. Endothelialization of cardiovascular devices. Acta Biomater. 2019;99:53-71. https://doi.org/10.1016/j.actbio.2019.08.042

5. Deanfi JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115(10):12851295. https://doi.org/10.1161/CIRCULATIONAHA.106.652859

6. Gökçinar-Yagci B, Yersal N, Korkusuz P, Çelebi-Saltik B. Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct. Microvasc Res. 2018;118:101-112. https://doi.org/10.1016/j.mvr.2018.03.005

7. Mironov V, Kasyanov V, McAllister K, Oliver S, Sistino J, Markwald R. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J Craniofac Surg. 2003;14(3):340-347. https://doi.org/10.1097/00001665-200305000-00012

8. Jia W, Li M, Weng H, Gu G, Chen Z. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2020;110:110717. https://doi.org/10.1016/j.msec.2020.110717

9. Lord MS, Cheng B, McCarthy SJ, Jung M, Whitelock JM. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 2011;32(28): https://doi.org/6655-6662.10.1016/j.biomaterials.2011.05.062

10. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 2019;4:271-292. https://doi.org/10.1016/j.bioactmat.2019.10.005

11. Bai H, Dardik A, Xing Y. Decellularized Carotid Artery Functions as an Arteriovenous Graft. J Surg Res. 2019;234:33-39. https://doi.org/10.1016/j.jss.2018.08.008

12. Matsuzaki Y, John K, Shoji T, Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Appl Sci (Basel). 2019;9(7):1274. https://doi.org/10.3390/app9071274

13. Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021;6(8):2412-2438. https://doi.org/10.1016/j.bioactmat.2021.01.007

14. Tysoe OC, Justin AW, Brevini T, Chen SE, Mahbubani KT, Frank AK, Zedira H, Melum E, Saeb-Parsy K, Markaki AE, Vallier L, Sampaziotis F. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nat Protoc. 2019;14(6):1884-1925. https://doi.org/10.1038/s41596-019-0168-0

15. Hu Y-T, Pan X-D, Zheng J, Ma W-G, Sun L.-Z. In Vitro and In Vivo Evaluation of a Small-Caliber Coaxial Electrospun Vascular Graft Loaded with Heparin and VEGF. Int J Surg. 2007;44:244-249. https://doi.org/10.1016/j.ijsu.2017.06.077

16. Pepper VK, Clark ES, Best CA, Onwuka EA, Sugiura T, Heuer ED, Moko LE, Miyamoto S, Miyachi H, Berman DP, Cheatham SL, Chisolm JL, Shinoka T, Breuer CK, Cheatham JP. Intravascular Ultrasound Characterization of a Tissue-Engineered Vascular Graft in an Ovine Model. J Cardiovasc Trans Res. 2007;10(2):128-138. https://doi.org/10.1007/s12265-016-9725-x

17. Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the fi Expert Rev Med Devices. 2017;14(5):383-392. https://doi.org/10.1080/17434440.2017.1324293

18. Sugiura T, Matsumura, G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T. Tissue-Engineered Vascular Grafts in Children with Congenital Heart Disease: Intermediate Term Follow-Up. Semin Thorac Cardiovasc Surg. 2018;30(2):175-179. https://doi.org/10.1053/j.semtcvs.2018.02.002

19. Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue-Engineered Small Diameter Arterial Vascular Grafts from CellFree Nanofi PCL/Chitosan Scaffolds in a Sheep Model. PLoS One. 2016;11(7):e0158555. https://doi.org/10.1371/journal.pone.0158555

20. Shafi M, Zhang Q, Zhi D, Wang K, Kong D, Kim DH, Kim SH. In Situ Blood Vessel Regeneration Using SP (Substance P) and SDF (Stromal Cell-Derived Factor)-1α Peptide Eluting Vascular Grafts. Arterioscler Thromb Vasc Biol. 2018;38(7):e117-e134. https://doi.org/10.1161/ATVBAHA.118.310934

21. Mohan T, Nagaraj C, Nagy BM, Bračič M, Maver U, Olschewski A, Stana Kleinschek K, Kargl R. Nanoand Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules. 2019;20(6):2327-2337. https://doi.org/10.1021/acs.biomac.9b00304

22. Govorčin Bajsić E, Zdraveva E, Holjevac Grgurić T, Slivac I, Tominac Trcin M, Mrkonjić N, Kuzmić S, Dolenec T, Vrgoč Zimić I, Mijović B. Preparation and Characterization of Electrospun PCL/Silk Fibroin Scaffolds. Chemical and Biochemical Engineering Quarterly. 2021;35(1):31-42. https://doi.org/10.15255/CABEQ.2020.1834

23. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, Vorp DA, Mandal BB. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater. 2020;105:146-158. https://doi.org/10.1016/j.actbio.2020.01.020

24. Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021;6(8):2412-2438. https://doi.org/10.1016/j.bioactmat.2021.01.007

25. Antonova LV, Sevostyanova VV, Mironov AV, Krivkina EO, Velikanova EA, Matveeva VG, Glushkova TV, Elgudin YL, Barbarash LS. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Комплексные проблемы сердечно-сосудистых заболеваний. 2018;7(2):25-36. https://doi.org/10.17802/2306-1278-2018-7-2-25-36

26. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater. 2019;4:271-292. https://doi.org/10.1016/j.bioactmat.2019.10.005

27. Ardila DC, Liou JJ, Maestas D, Slepian MJ, Badowski M, Wagner WR, Harris D, Vande Geest JP. Surface Modifi of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. J Clin Med. 2019;8(2):185. https://doi.org/10.3390/jcm8020185

28. Антонова Л.В., Севостьянова В.В., Кутихин А.Г., Великанова Е.А., Матвеева В.Г., Глушкова Т.В., Миронов А.В., Кривкина Е.О., Барбараш О.Л., Барбараш Л.С. Влияние способа модифицирования трубчатого полимерного матрикса биомолекулами bfgf, sdf-1α и vegf на процессы формирования in vivo тканеинженерного кровеносного сосуда малого диаметра. Вестник трансплантологии и искусственных органов. 2018;20(1):96-109. https://doi.org/10.15825/1995-1191-2018-1-96-109

29. Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, Modaresi S, Berkland C, Paul A. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev. 2017;120:50-70. https://doi.org/10.1016/j.addr.2017.07.011

30. Zilla P, Bezuidenhout D, Human P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007;28(34):50095027. https://doi.org/10.1016/j.biomaterials.2007.07.017

31. Motwani MS, Rafi Y, Tzifa A, Seifalian AM. In situ endothelialization of intravascular stents from progenitor stem cells coated with nanocomposite and functionalized biomolecules. Biotechnol Appl Biochem. 2011;58(1):2-13. https://doi.org/10.1002/bab.10

32. Buttery LDK, Bishop AE. Introduction to tissue engineering. In: Biomater Artif Organs Tissue Eng. Elsevier Inc: 2005;193-200. https://doi.org/10.1533/9781845690861.4.193

33. Лыков А.П., Повещенко О.В., Бондаренко Н.А., Суровцева М.А., Ким И.И. Усиление адгезии стволовых прогениторных клеток к синтетическим материалам внеклеточным матриксом. Вестник Российской академии медицинских наук. 2017;72(5):336-345. https://doi.org/10.15690/vramn882

34. Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL, Newby DE, Turner ML. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther. 2012;3(4):23. https://doi.org/10.1186/scrt114

35. Matveeva V, Khanova M, Sardin E, Antonova L, Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018;19(11):3453. https://doi.org/10.3390/ijms19113453

36. Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv Healthc Mater. 2018;7(15):e1701461. https://doi.org/10.1002/adhm.20170146

37. Shojaei S, Tafazzoli-Shadpour M, Shokrgozar MA, Haghighipour N, Jahromi FH. Stress phase angle regulates differentiation of human adipose-derived stem cells toward endothelial phenotype. Prog Biomater. 2018;7(2):121-131. https://doi.org/10.1007/s40204-018-0090-5

38. Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B. Effi Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. Eur J Vasc Endovasc Surg. 2018;55(2):257-265. https://doi.org/10.1016/j.ejvs.2017.10.012

39. Hasanzadeh E, Amoabediny G, Haghighipour N, Gholami N, Mohammadnejad J, Shojaei S, Salehi-Nik N. The stability evaluation of mesenchymal stem cells differentiation toward endothelial cells by chemical and mechanical stimulation. In Vitro Cell Dev Biol Anim. 2017;53(9):818-826. https://doi.org/10.1007/s11626-017-0165-y

40. Kim DH, Heo SJ, Kang YG, Shin JW, Park SH, Shin JW. Shear stress and circumferential stretch by pulsatile fl direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels. J Mater Sci Mater Med. 2016;27(3):60. https://doi.org/10.1007/s10856-016-5670-0

41. Cheng BB, Qu MJ, Wu LL, Shen Y, Yan ZQ, Zhang P, Qi YX, Jiang ZL. MicroRNA-34a targets Forkhead box j2 to modulate differentiation of endothelial progenitor cells in response to shear stress. J Mol Cell Cardiol. 2014;74:4-12. https://doi.org/10.1016/j.yjmcc.2014.04.016

42. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292(3):H12091224. https://doi.org/10.1152/ajpheart.01047.2006

43. Shafi O. Switching of vascular cells towards atherogenesis, and other factors contributing to atherosclerosis: a systematic review. Thromb J. 2020;18:28. https://doi.org/10.10.1186/s12959-020-00240-z

44. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):1626. https://doi.org/10.1038/ncpcardio1397

45. Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol. 2021;9:721843. https://doi.org/10.3389/fbioe.2021.721843

46. Plein A, Fantin A, Denti L, Pollard JW, Ruhrberg C. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature. 2018;562(7726):223-228. https://doi.org/10.1038/s41586-018-0552-x

47. Liu H, Gong X, Jing X, Ding X, Yao Y, Huang Y, Fan Y. Shear stress with appropriate time-step and amplifi enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med. 2017;11(11):29652978. https://doi.org/10.1002/term.2196

48. Севостьянова В.В., Великанова Е.А. Биомеханические стимулы в регуляции формирования сосудистой ткани in vitro. Цитология. 2018;60(6):417-429. https://doi.org/10.31116/tsitol.2018.06.02

49. Shoajei S, Tafazzoli-Shahdpour M, Shokrgozar MA, Haghighipour N.Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments. Cell Biol Int. 2014;38(5):577581. https://doi.org/10.1002/cbin.10237

50. Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F. Tissue Engineering at the Blood‐Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv. Healthc. Mater. 2018;7(15):e1701461. https://doi.org/10.1002/adhm.201701461


Рецензия

Для цитирования:


Ханова М.Ю., Антонова Л.В. Основные аспекты создания in vitro клеточнозаселенных сосудистых протезов. Фундаментальная и клиническая медицина. 2022;7(4):100-109. https://doi.org/10.23946/2500-0764-2022-7-4-100-109

For citation:


Khanova M.Yu., Antonova L.V. Development of pre-seeded tissue-engineered vascular grafts in vitro. Fundamental and Clinical Medicine. 2022;7(4):100-109. (In Russ.) https://doi.org/10.23946/2500-0764-2022-7-4-100-109

Просмотров: 65


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)