Preview

Фундаментальная и клиническая медицина

Расширенный поиск

ПЕРИВАСКУЛЯРНОЙ АСТРОГЛИИ И CD133+ КЛЕТОК-ПРЕДШЕСТВЕННИКОВ ЭНДОТЕЛИОЦИТОВ ПРИ МОДЕЛИРОВАНИИ БОЛЕЗНИ АЛЬЦГЕЙМЕРА У МЫШЕЙ

Полный текст:

Аннотация

Цель. Изучить экспрессию NLRP3 в периваскулярной астроглии и CD133+ эндотелиальных клетках-предшественниках при амилоид-индуцированной нейродегенерации. Материалы и методы. Эксперименты выполнены на мышах мужского пола линии CD1 (4 месяцев, весом 25-30 г). Мышам экспериментальной группы введен Aβ1-42 в гиппокамп головного мозга. Через 10 дней после инъекции провели иммуногистохимическую оценку экспрессии NLRP3 инфламмасом в S100beta и CD133+ клетках методом визуализации конфокальной микроскопии. Определили коэффициент корреляции Пирсона и коэффициент перекрытия по Manders (overlap coefficient). Результаты. Определено увеличение экспрессии S100betа-позитивных клеток при введении бета-амилоида в гиппокамп животных. При оценивании колокализации S100beta/NL-RP3 выявлена выраженная положительная корреляция двух маркеров S100beta и NLRP3 в клетках зубчатой извилины обеих групп животных. При иммуногистохимическом исследовании CD133+ клеток-предшественниц не зафиксировано статистически значимых отличий при моделировании нейродегенерации и при проведении ложной операции, однако наблюдалась тенденция к снижению экспрессии данного маркера при введении олигомеров бета-амилоида. Тем не менее, при моделировании амилоид-индуцированной нейродегенерации отмечается статистически значимое увеличение колокализации CD133/NLRP3. Заключение. При моделировании болезни Альцгеймера отмечается эффект активации глии с экспрессией S100beta. Увеличение экспрессии S100beta может свидетельствовать о том, что при экспериментальной болезни Альцгеймера S100beta-иммунопозитивные (протоплазматические, ассоциированные с нейроваскулярной единицей) астроциты в пределах нейрогенных ниш реагируют на нейротоксическое действие олигомеров бета-амилоида. По данным иммуногистохимического анализа было показано, что развитие воспаления в ткани головного мозга при нейротоксическом дейcтвии бета-амилоида связано с формированием NLRP3-инфламмасом в нейрогенной нише головного мозга, что в конечном итоге может приводить к нарушению процессов синаптогенеза, нейрогенеза и ангиогенеза, ассоциированных с репарацией или реализацией когнитивных функций. Экспрессия инфламмасом NLRP3 в CD133+ клетках-предшественниках эндотелиальных клеток увеличивается при моделировании болезни Альцгеймера. Такой провоспалительный фенотип клеток, по всей видимости, необходим для формирования сложного самоактивирующегося порочного круга, способного приводить к дальнейшей дисфункции нейроваскулярной единицы.

Об авторах

А. И. Черных
НИИ молекулярной медицины и патобиохимии, ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


Ю. К. Комлева
НИИ молекулярной медицины и патобиохимии, ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


Я. В. Горина
НИИ молекулярной медицины и патобиохимии, ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


О. Л. Лопатина
НИИ молекулярной медицины и патобиохимии, ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


С. И. Пащенко
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


А. Б. Салмина
НИИ молекулярной медицины и патобиохимии, ФГБОУ ВО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001; 81 (2): 741-766.

2. Jorge G, Fossati S, Rostagno A. Amyloidosis Associated with Cerebral Amyloid Angiopathy: Cell Signaling Pathways Elicited in Cerebral Endothelial Cells. J Alzheimers Dis. 2014; 42 (03): 167-176.

3. Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. Int J Mol Sci. 2017; 18 (9). pii: E1965.

4. Hall JR, Wiechmann AR., Johnson LA, Edwards M, Barber RC, Winter AS, et al. Biomarkers of Vascular Risk, Systemic Inflammation and Microvascular Pathology and Neuropsychiatric Symptoms in Alzheimer’s Disease. J Alzheimers Dis. 2013; 35 (2): 363-371.

5. Komleva YuK, Kuvacheva NV, Malinocskaya NA, Gorina YaV, Lopatina OL, Teplyashina EA, et al. Regenerative potential of the brain: Composition and forming of regulatory microenvironment in neurogenic niches. Human Physiology. 2016; 42 (8): 865-873.

6. Salmina AB, Komleva YuK, Lopatina OL, Kuvacheva NV, Gorina YaV, Panina YuA, et al. Astroglial control of neuroinflammation:TLR3-mediated dsRNA-sensing pathways are in the focus. Rev Neurosci. 2015; 26(2): 143-159.

7. Jo WK, Law AC, Chung SK. The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogeneses of major neurocognitive disorders. Mol Psychiatry. 2014; 19 (2): 159-167.

8. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia. 2011; 59 (2): 242-255.

9. Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013; 65 (3): 872-905.

10. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008; 9 (8): 857-865.

11. White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer's disease. Brain Pathol. 2017; 27 (2): 223-234.

12. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Волкова В.В., Герцог Г.Е., Попова Н.Н. и др. Особенности экспрессии молекул-маркеров инсулинорезистентности при экспериментальной болезни Альцгеймера // Проблемы эндокринологии. 2015. №4. С. 43-48

13. Epelbaum S, Youssef I, Lacor PN, Chaurand P, Duplus E, Brugg B, et al. Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo. Neurobiol Aging. 2015; 36 (6): 2043-2052.

14. Paxinos G, Franklin K. The Mouse Brain in Stereotaxic Coordinates, 4th Edition. Imprint: Academic Press. 2012. P. 360.

15. Zinchuk V, Zinchuk O, Okada T. Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem. 2007; 40: 101-111

16. Saresella M, Marventano I, Calabrese E, Piancone F, Rainone V, Gatti A, et al. A complex proinflammatory role for peripheral monocytes in Alzheimer's disease. J Alzheimers Dis. 2014; 38 (2): 403-413.

17. Birch AM, Katsouri L, Sastre M. Modulation of inflammation in transgenic models of Alzheimer's disease. J Neuroinflammation. 2014; 11: 25.

18. Chaves ML, Camozzato AL, Kohler C, Kaye J. Predictors of the progression of dementia severity in brazilian patients with Alzheimer's disease and vascular dementia. Int J Alzheimers Dis. 2010; 2010. pii: 673581

19. Моргун А.В., Малиновская Н.А., Комлева Ю.К., Лопатина О.Л., Кувачева Н.В., Панина Ю.А. и др. Структурная и функциональная гетерогенность астроцитов головного мозга: роль в нейрогенезе и нейровоспалении // Бюллетень сибирской медицины. 2014. №5. С. 138-148

20. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013; 126 (4): 479-497.

21. Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm. 2010; 117 (8): 919-947.

22. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch Pharm Res. 2010; 33 (10): 1539-1556.

23. Terrill-Usery SE, Mohan MJ, Nichols MR. Amyloid-β(1-42) protofibrils stimulate a quantum of secreted IL-1β despite significant intracellular IL-1β accumulation in microglia. Biochim Biophys Acta. 2014; 1842 (11): 2276-2285.

24. Goldmann T, Tay TL, Prinz M. Love and death: microglia, NLRP3 and the Alzheimer's brain. Cell Res. 2013; 23 (5): 595-596.

25. Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, et al. S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis. Mol Neurobiol. 2016; 53 (6): 3976-3991.

26. Koh SX, Lee JK. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014; 44 (3): 369-385.

27. Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, et al. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer’s brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis. 2009; 34: 95-106.

28. Stellos K, Panagiota V, Sachsenmaier S, Trunk T, Straten G, Leyhe T, et al. Increased circulating progenitor cells in Alzheimer's disease patients with moderate to severe dementia: evidence for vascular repair and tissue regeneration? J Alzheimers Dis. 2010; 19 (2): 591-600.

29. Akita M, Tanaka K, Matsumoto S, Komatsu K, Fujita K. Detection of the Hematopoietic Stem and Progenitor Cell Marker CD133 during Angiogenesis in Three-Dimensional Collagen Gel Culture. Stem Cells Int. 2013; 2013: 927403.

30. Deng Y, Han X, Yao Z, Sun Y, Yu J, Cai J, et al. PPARα Agonist Stimulated Angiogenesis by Improving Endothelial Precursor Cell Function Via a NLRP3 Inflammasome Pathway. Cell Physiol Biochem. 2017; 42 (6):2255-2266.

31. Son SM, Song H, Byun J, Park KS, Jang HC, Park YJ, et al. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy. 2012; 8: 1842-1844.

32. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation. 2011; 8: 26.

33. Wilcock DM, Griffin WS. Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J Neuroinflammation. 2013; 10: 84.


Для цитирования:


Черных А.И., Комлева Ю.К., Горина Я.В., Лопатина О.Л., Пащенко С.И., Салмина А.Б. ПЕРИВАСКУЛЯРНОЙ АСТРОГЛИИ И CD133+ КЛЕТОК-ПРЕДШЕСТВЕННИКОВ ЭНДОТЕЛИОЦИТОВ ПРИ МОДЕЛИРОВАНИИ БОЛЕЗНИ АЛЬЦГЕЙМЕРА У МЫШЕЙ. Фундаментальная и клиническая медицина. 2018;3(1):6-15.

For citation:


Chernykh A.I., Komleva Y.K., Gorina Y.V., Lopatina O.L., Paschenko S.I., Salmina A.B. PRO-INFLAMMATORY PHENOTYPE OF PERIVASCULAR ASTROCYTES AND CD133+ ENDO-THELIAL PROGENITOR CELLS IN MURINE MODEL OF ALZHEIMER’S DISEASE. Fundamental and Clinical Medicine. 2018;3(1):6-15. (In Russ.)

Просмотров: 35


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)