Preview

Фундаментальная и клиническая медицина

Расширенный поиск

СРАВНЕНИЕ БЕЛКОВОГО СОСТАВА ЭКСТРАЦЕЛЛЮЛЯРНОГО МАТРИКСА ПЕЧЕНОЧНЫХ МЕТАСТАЗОВ КОЛОРЕКТАЛЬНОГО РАКА И НОРМАЛЬНЫХ ТКАНЕЙ ПЕЧЕНИ

Полный текст:

Аннотация

Цель. Сравнить состав белков экстрацеллюлярного матрикса в индуцированных in vivo печеночных метастазах колоректального рака и нормальных тканях печени. Материалы и методы. Экстрацеллюлярный матрикс выделялся посредством децеллюляризации с использованием коктейля детергентов. Белковый состав печеночных метастазов колоректального рака и нормальных тканей печени исследовался при помощи масс-спектрометрии и иммунофлюоресцентного окрашивания. Результаты. Протеомный анализ выявил значительные различия в экспрессии белков экстрацеллюлярного матрикса между печеночными метастазами колоректального рака и нормальными тканями печени. Результаты масс-спектрометрии были подтверждены окрашиванием на соответствующие белки. Заключение. Качественный и количественный состав белков экстрацеллюлярного матрикса печеночных метастазов колоректального рака и нормальных тканей печени существенно отличается.

Об авторах

А. Е. Южалин
Кафедра онкологии, Оксфордский институт радиационной онкологии, Оксфордский университет
Россия


Р. Ж. Мушел
Кафедра онкологии, Оксфордский институт радиационной онкологии, Оксфордский университет
Россия


Список литературы

1. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15(12): 786-801.

2. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016; 97:4-27.

3. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010; 123(24): 4195-4200.

4. Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, et al. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol. 2013; 11(2): 70-92.

5. Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016; 7(3): 105-114.

6. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32(12): 3233-3243.

7. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005; 4(9): 1265-1272.

8. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Mol Cell Proteomics. 2012; 11(4):M111.014647.

9. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2): 69-90.

10. Dimitrakopoulos L, Prassas I, Diamandis EP, Charames GS. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction. Crit Rev Clin Lab Sci. 2017; 54(6): 414-432.

11. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-β Tumor Suppression through a Lethal EMT. Cell. 2016; 164(5): 1015-1030.

12. Standiford TJ, Kuick R, Bhan U, Chen J, Newstead M, Keshamouni VG. TGF-B-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene. 2011; 30(21): 2475-2484.

13. Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-β1-Induced Epithelial-Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol. 2015; 5; 3.

14. Yang S, Chen L, Chan DW, Li QK, Zhang H. Protein signatures of molecular pathways in non-small cell lung carcinoma (NSCLC): comparison of glycoproteomics and global proteomics. Clin Proteomics. 2017; 14(1): 31.

15. Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017; 19(10): 1274-1285.

16. Liu S, Li X, Lin Z, Su L, Yan S, Zhao B, et al. SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis. Cancer Lett. 2018; 416: 11-23.

17. Ye W, Li Y, Fan L, Zhao Q, Yuan H, Tan B, et al. Effect of annexin A7 suppression on the apoptosis of gastric cancer cells. Mol Cell Biochem. 2017; 429(1-2): 33-43.

18. Meding S, Balluff B, Elsner M, Schone C, Rauser S, Nitsche U, et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol. 2012; 228(4): 459-470.

19. Xiao M, Li T, Ji Y, Jiang F, Ni W, Zhu J, et al. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway. Oncol Lett. 2017; 15(1): 175-182.

20. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol. 2005; 24(5): 326-332.


Для цитирования:


Южалин А.Е., Мушел Р.Ж. СРАВНЕНИЕ БЕЛКОВОГО СОСТАВА ЭКСТРАЦЕЛЛЮЛЯРНОГО МАТРИКСА ПЕЧЕНОЧНЫХ МЕТАСТАЗОВ КОЛОРЕКТАЛЬНОГО РАКА И НОРМАЛЬНЫХ ТКАНЕЙ ПЕЧЕНИ. Фундаментальная и клиническая медицина. 2018;3(1):16-21.

For citation:


Yuzhalin A.E., Muschel R.J. PROTEOMIC COMPARISON OF EXTRACELLULAR MATRIX WITHIN LIVER METASTASES OF COLORECTAL CANCER AND NORMAL LIVER. Fundamental and Clinical Medicine. 2018;3(1):16-21. (In Russ.)

Просмотров: 0


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)