Review article circadian disruption in pathophysiology of diabetes mellitus
https://doi.org/10.23946/2500-0764-2023-8-3-124-130
Abstract
Diabetes mellitus is a leading endocrine disease with a steadily increasing incidence, and its complications impose a heavy burden on the healthcare. Although pathophysiology of diabetes mellitus has been extensively investigated through the recent decades, the role of circadian rhythms in this regard was vaguely described. Circadian rhythms comprise an autonomous system of neuroendocrine signals and transcription factors that enfold key physiological processes into a daily cycle. Circadian clocks are subdivided into central (located in the suprachiasmatic nuclei of the hypothalamus) and peripheral oscillators (located in organs and cells) which produce circadian variations in the activity of virtually all cells within the human body, including the β cells of the pancreas. Circadian rhythm disruption causes circadian desynchronization which is associated with impaired glucose metabolism and insulin secretion, thereby being considered as one of the triggers of diabetes mellitus. Production of melatonin, a master regulator of circadian rhythms and a potent antioxidant, is significantly reduced in patients with diabetes mellitus. Circadian desynchronization may be triggered by a jetlag or an eating disorder. At present, circadian disruption is viewed as an important cause for the development of diabetes mellitus, although the mechanisms of such link have not been fully elucidated hitherto and might include genetic predisposition and increased oxidative stress. Timely diagnosis and appropriate treatment of circadian disruption in patients with diabetes mellitus may ameliorate the severity or prevent diabetes complications.
About the Author
Yu. V. BykovRussian Federation
Yuri V. Bykov - MD, PhD, Assistant Professor, Department of Anesthesiology, Resuscitation and Emergency Medicine, Stavropol State Medical University.
310, Mira Street, Stavropol, 355017
References
1. Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin's roles in prophylaxis and management. World J Diabetes. 2018;9(7):99-114. https://doi.org/10.4239/wjd.v9.i7.99
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/nrendo.2017.151
3. Wajid F, Poolacherla R, Mim FK, Bangash A, Rutkofsky IH. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord. 2020;19(2):1797-1825. https://doi.org/10.1007/s40200-020-00585-2
4. Henry CJ, Kaur B, Quek RYC. Chrononutrition in the management of diabetes. Nutr Diabetes. 2020;10(1):6. https://doi.org/10.1038/s41387-020-0109-6
5. Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12:616-622. https://doi.org/10.1038/nrendo.2016.105
6. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843
7. Javeed N, Matveyenko AV. Circadian Etiology of Type 2 Diabetes Mellitus. Physiology (Bethesda). 2018;33(2):138-150. https://doi.org/10.1152/physiol.00003.2018
8. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018:3086167. https://doi.org/0.1155/2018/3086167
9. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107-111. https://doi.org/10.2991/jegh.k.191028.001
10. Lee J, Ma K, Moulik M, Yechoor V. Untimely oxidative stress in в-cells leads to diabetes - Role of circadian clock in в-cell function. Free Radic Biol Med. 2018;119:69-74. https://doi.org/10.1016/j.freerad-biomed.2018.02.022
11. Lee Y, Field JM, Sehgal A. Circadian Rhythms, Disease and Chronotherapy. J Biol Rhythms. 2021;36(6):503-531. https://doi.org/10.1177/07487304211044301
12. Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol. 2022;237:3239-3256. https://doi.org/10.1002/jcp.30815
13. Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lann C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct. Target. Ther. 2022;7:41. https://doi.org/10.1038/s41392-022-00899-y.
14. Bykov YuV, Baturin VA. Disruption of the biological clock in adolescents with type i diabetes mellitus in remission. Transbaikalian medical bulletin. 2022:4;19-26. (In Russ.) https://doi.org/10.52485/19986173_2022_4_19
15. Bykov YuV, Baturin VA. Adaptive capacity imairment in children with in-sulin-dependent diabetes mellitus as shown by time interval assessment. Bulletin of Contemporary Clinical Medicine. 2021;14(5):112-116. (In Russ.) https://doi.org/10.20969/VSKM.2021.14(5).112-116
16. Parameswaran G, Ray DW. Sleep, circadian rhythms, and type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2022;96(1):12-20. https://doi.org/10.1111/cen.14607
17. Akinci E, Orhan FO. Sirkadiyen ritim uyku bozukluklari. Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry. 2016;8(2):178-189. https://doi.org/10.18863/pgy.81775
18. Serin Y, Acar Tek N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann Nutr Metab. 2019;74(4):322-330. https://doi.org/10.1159/000500071
19. Peng X, Fan R, Xie L, Shi X, Dong K, Zhang S, Tao J, Xu W, Ma D, Chen J, Yang Y. A Growing Link between Circadian Rhythms, Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci. 2022;23(1):504. https://doi.org/10.3390/ijms23010504
20. Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science. 2019;365(6460):1428-1434. https://doi.org/10.1126/science.aaw3134
21. Liu F, Chang HC. Physiological links of circadian clock and biological clock of aging. Protein Cell. 2017;8(7):477-488. https://doi.org/10.1007/s13238-016-0366-2
22. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science. 2016;354(6315):994-999. https://doi.org/10.1126/science.aah4965
23. Guldur T, Otlu HG. Circadian rhythm in mammals: time to eat time to sleep. Biol Rhythm Res. 2017;48(2):243-261. https://doi.org/10.1080/09291016.2016.1251968
24. Sato F, Kohsaka A, Bhawal UK, Muragaki Y. Potential roles of Dec and Bmal1 Genes in interconnecting circadian clock and energy metabolism. Int J Mol Sci. 2018;19(3):E781. https://doi.org/10.3390/ijms19030781
25. Yadlapalli S, Jiang C, Bahle A, Reddy P, Meyhofer E, Shafer OT. Circadian clock neurons constantly monitor environmental temperature to set sleep timing. Nature. 2018;555(7694):98-102. https://doi.org/10.1038/nature25740
26. Ikeda Y, Kamagata M, Hirao M, Yasuda S, Iwami S, Sasaki H, Tsubosaka M, Hattori Y, Todoh A, Tamura K, Shiga K, Ohtsu T, Shibata S. Glucagon and/or IGF-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMedicine. 2018;28:210-224. https://doi.org/10.1016/j.ebiom.2018.01.012
27. Olaoye OA, Masten SH, Mohandas R, Gumz ML. Circadian Clock Genes in Diabetic Kidney Disease (DKD). Curr Diab Rep. 2019;19(7):42. https://doi.org/10.1007/s11892-019-1156-z
28. Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne). 2017;8:42. https://doi.org/10.3389/fendo.2017.00042
29. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb Perspect Biol 2017;99(1):027706. https://doi.org/10.1101/cshperspect.a027706
30. Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltsas G. Clock genes alterations and endocrine disorders. Eur J Clin Invest. 2018;48(6):12927. https://doi.org/10.1111/eci.12927
31. Machicao F, Peter A, Machann J, Königsrainer I., Böhm A, Lutz SZ, Heni M, Fritsche A, Schick F, Konigsrainer A, Stefan N, Haring HU, Staiger H. Glucose-Raising Polymorphisms in the Human Clock Gene Cryptochrome 2 (CRY2) Affect Hepatic Lipid Content. PLoS One. 2016;11(1):0145563. https://doi.org/10.1371/journal.pone.0145563
32. Pivovarova O, Gogebakan O, Sucher S, Groth J, Murahovschi V, Kessler K, Osterhoff M, Rudovich N, Kramer A, Pfeiffer AF. Regulation of the clock gene expression in human adipose tissue byweight loss. Int J Obes (Lond). 2016;40(6):899-906. https://doi.org/10.1038/ijo.2016.34
33. Kitcyshin VP, Salukhov VV, Demidova TA, Sardinov RT. Circadian model of carbohydrate metabolism regulation in normal. Consilium Medicum. 2016;18(4):38-42. (In Russ.) https://doi.org/10.26442/2075-1753_2016.4.38-42
34. Kuehn BM. Resetting the circadian clock might boost metabolic health. JAMA. 2017;317(13):1303-1305. https://doi.org/10.1001/jama.2017.0653
35. Qian J, Scheer FA. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab. 2016;27(5):282-293. https://doi.org/10.1016/j.tem.2016.03.005
36. Sorokin MYu, Pinkhasov BB, Selyatitskaya VG. Circadian rhythm of car-bohydrate metabolism in health and disease. Acta Biomedica Scientifica. 2023;8(2):124-137. (In Russ.) https://doi.org/10.29413/ABS.2023-8.2.12
37. Mason IC, Qian J, Adler GK, Scheer FAJL. Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia. 2020;63(3):462-472. https://doi.org/10.1007/s00125-019-05059-6.
38. Poggiogalle E, Peterson CM. Circadian Regulation of Glucose, Lipid, and Energy Metabolism in Humans. Metabolism. 2018;84:11-27. https://doi.org/10.1016/j.metabol.2017.11.017
39. Harada N, Inagaki N. Role of clock genes in insulin secretion. J Diabetes Investig. 2016;7(6):822-823. https://doi.org/10.1111/jdi.12517
40. Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci. 2022;18(3):983-994. https://doi.org/10.7150/ijbs.66871
41. Yapislar H, Haciosmanoglu E, Sarioglu T, Degirmencioglu S, Sogut I, Poteser M, Ekmekcioglu C. Anti-Inflammatory Effects of Melatonin in Rats with Induced Type 2 Diabetes Mellitus. Life (Basel). 2022;12(4):574. https://doi.org/10.3390/life12040574
42. Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr. 2020;12:30. https://doi.org/10.1186/s13098-020-00537-z
43. Sun H, Wang X, Chen J, Gusdon AM, Song K, Li L. Melatonin treatment improves insulin resistance and pigmentation in obese patients with acanthosis nigricans. Int J Endocrinol. 2018;2018:2304746. https://doi.org/10.1155/2018/2304746
44. Owino S, Sánchez-Bretaño A, Tchio C, Cecon E, Karamitri A, Dam J, Jockers R, Piccione G, Noh HL, Kim T, Kim JK, Baba K, Tosini G. Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of PI3K activity. J Pineal Res. 2018;64(3):10.1111/jpi.12462. https://doi.org/10.1111/jpi.12462
45. Simoes D, Riva P, Peliciari-Garcia RA, Cruzat VF, Graciano MF, Munhoz AC, Taneda M, Cipolla-Neto J, Carpinelli AR. Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase. J Endocrinol. 2016;231(3):235-244. https://doi.org/10.1530/JOE-16-0259
46. Ulhôa MA, Marqueze EC, Burgos LG, Moreno CR. Shift work and endocrine disorders. Int J Endocrinol. 2015;2015:826249. https://doi.org/10.10.1155/2015/826249
47. Breasson L, Becattini B, Sardi C, Molinaro A, Zani F, Marone R, Botindari F, Bousquenaud M, Ruegg C, Wymann MP, Solinas G. PI3Kgamma activity in leukocytes promotes adipose tissue inflammation and earlyonset insulin resistance during obesity. Sci Signal. 2017;10(488):eaaf2969. https://doi.org/10.1126/scisignal.aaf2969
48. Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FA. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol Metab. 2020;31(3):192-204. https://doi.org/10.1016/j.tem.2019.11.011
49. Balmik AA, Chinnathambi S. Multi-Faceted Role of Melatonin in Neuroprotection and Amelioration of Tau Aggregates in Alzheimer's Disease. J Alzheimers Dis. 2018;62(4):1481-1493. https://doi.org/10.3233/JAD-170900
50. Cardinali DP. Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne). 2019;10:480. https://doi.org/10.3389/fendo.2019.00480
51. Garda-Serrano C, Pujol Salud J, Aran-Sole L, Sol J, Ortiz-Congost S, Artigues-Barbera E, Ortega-Bravo M. Enhancing Night and Day Circadian Contrast through Sleep Education in Prediabetes and Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Biology (Basel). 2022;11(6):893. https://doi.org/10.3390/biology11060893
52. Harder L, Oster H. Zirkadiane Rhythmen - Wie beeinflussen sie unser Leben? [Circadian rhythms - how do they influence our lives?]. Dtsch Med Wochenschr. 2019;144(15):1014-1017. https://doi.org/10.1055/a-0662-1950
53. Vetter C, Dashti HS, Lane JM, Anderson SG, Schernhammer ES, Rutter MK, Saxena R, Scheer FAJL. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank. Diabetes Care. 2018;41(4):762-769. https://doi.org/10.2337/dc17-1933
54. Luo Q, Xiao Y, Alex A, Cummins TR, Bhatwadekar AD. The diurnal rhythm of insulin receptor substrate-1 (IRS-1) and Kir4.1 in diabetes: implications for a clock gene Bmal1. Invest Ophthalmol Vis Sci. 2019;60(6):1928-1936. https://doi.org/10.1167/iovs.18-26045
55. Stenvers DJ, Scheer FAJL, Schrauwen P, Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75-89. https://doi.org/10.1038/s41574-018-0122-1
56. Kelly RM, Healy U, Sreenan S, McDermott J, Coogan AN. An exploratory study of associations between sleep timing variability and cardiometabolic health in middle-aged adults with type 2 diabetes mellitus. Chronobiol Int. 2022;39(4):569-578. https://doi.org/10.1080/07420528.2021.2005083
57. Schipper SBJ, Van Veen MM, Elders PJM, van Straten A, Van Der Werf YD, Knutson KL, Rutters F. Sleep disorders in people with type 2 diabetes and associated health outcomes: a review of the literature. Diabetologia. 2021;64(11):2367-2377. https://doi.org/10.1007/s00125-021-05541-0
58. Sakimura K, Maekawa T, Kume SI, Ohta T. Spontaneously Diabetic Torii (SDT) Fatty Rat, a Novel Animal Model of Type 2 Diabetes Mellitus, Shows Blunted Circadian Rhythms and Melatonin Secretion. Int J Endocrinol. 2018;2018:9065690. https://doi.org/10.1155/2018/9065690
59. Hergenhan S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system. J Mol Biol. 2020;432(12):3700-3713. https://doi.org/10.1016/j.jmb.2019.12.044
60. Bhatwadekar AD, Beli E, Diao Y, Chen J, Luo Q, Alex A, Caballero S, Dominguez 2nd JM, Salazar TE, Busik JV, Segal MS, Grant MB. Conditional deletion of Bmal1 accentuates microvascular and macrovascular injury. Am J Pathol. 2017;187(6):1426-1435. https://doi.org/10.1016/j.ajpath.2017.02.014
61. Molzof HE, Wirth MD, Burch JB, Shivappa N, Hebert JR, Johnson RL, Gamble KL. The impact of meal timing on cardiometabolic syndrome indicators in shift workers. Chronobiol Int. 2017;34(3):337-348. https://doi.org/10.1080/07420528.2016.1259242
62. Strohmaier S, Devore EE, Zhang Y, Schernhammer ES. A Review of Data of Findings on Night Shift Work and the Development of DM and CVD Events: a Synthesis of the Proposed Molecular Mechanisms. Curr Diab Rep. 2018;18(12):132. https://doi.org/10.1007/s11892-018-1102-5
63. Gao YY, Gan T, Jiang LL, Tang D, Wang Y, Li X, Ding G. Association between shift work and risk of type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of observational studies. Chronobiol Int. 2020;37(1):29-46. https://doi.org/10.1080/07420528.2019.168357
64. Sharma A, Laurenti MC, Dalla Man C, Varghese RT, Cobelli C, Rizza RA, Matveyenko A, Vella A. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia. 2017;60(8):1483-1490. https://doi.org/10.1007/s00125-017-4317-0
Review
For citations:
Bykov Yu.V. Review article circadian disruption in pathophysiology of diabetes mellitus. Fundamental and Clinical Medicine. 2023;8(3):124-130. (In Russ.) https://doi.org/10.23946/2500-0764-2023-8-3-124-130