Preview

Fundamental and Clinical Medicine

Advanced search

Pattern of Circulating Microrna's in Patients with Psoriatic Arthritis

https://doi.org/10.23946/2500-0764-2024-9-1-72-88

Abstract

Psoriatic arthritis (PsA) is a common rheumatic disease with an extremely variable phenotype. The main domains of PsA are peripheral arthritis, spondylitis, enthesitis and dactylitis. Studying new mechanisms of PsA development can help in finding the key to the development of innovative diagnostic methods and personalized approaches to the treatment of this disease. In recent years, the role of non-coding ribonucleic acids (RNA) in various diseases has been actively discussed, and the highest interest of researchers and clinicians has been focused on microRNAs. The purpose of this review was to search and systematize pre-clinical and clinical studies on the role of circulating microRNAs in the development of PsA and to update knowledge about molecular biomarkers of this disease. The search was conducted in PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, The Cochrane Library, and eLibrary databases using specific keywords and their combinations. We have analysed the publications for 2013-2023, including clinical studies of PsA and psoriasis (PsO). As a result of this descriptive review, miR-10b-5p, miR-126-3p, miR-151a-5p, and miR-130a-3p can be considered as promising molecular biomarkers of PsA and therapeutic response. However, the role of other miRs is debatable and needs further study. In the future, it will be possible to consider previously studied circulating microRNAs with high specificity and sensitivity in PsA as prognostic molecular biomarkers (predictors) of the risk of developing and severity of this disease in patients with PsO.

About the Authors

P. A. Shesternya
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Prof. Pavel A. Shesternya, MD, DSc, Professor, Head of the Department of Propaedeutics of Internal Diseases and Therapy, Chief Scientific Officer

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022



N. A. Shnayder
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University ; V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
Russian Federation

Prof. Natalia A. Shnayder, MD, DSc, Professor, Chief Researcher, Institute of Personalized Psychiatry and Neurology, Leading Researcher, Molecular and Cell Technologies Core Facility

3, Bekhtereva Street, Saint Petersburg, 192019 

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022



D. E. Filipenko
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Dr. Daria E. Filipenko, MD, PhD Student, Department of Propaedeutics of Internal Diseases and Therapy

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022 

 



E. V. Turchik
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Dr. Evgeniia V. Turchik, MD, PhD Student, Department of Dermatovenerology named after Professor V.I. Prokhorenkov

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022 



А. О. Vasilieva
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Dr. Аlexandra О. Vasilieva, MD, Assistant Professor, Department of Propaedeutics of Internal Diseases and Therapy

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022 



E. V. Kapustina
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Dr. Ekaterina V. Kapustina, MD, PhD, Associate Professor, Department of Propaedeutics of Internal Diseases and Therapy

1, Partizana Zheleznyaka Street, Krasnoyarsk, 660022 



References

1. Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinformatics. 2013;14 Suppl 14(Suppl 14):S2. https://doi.org/10.1186/1471-2105-14-S14-S2

2. Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, Hahne JC. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol. 2020;15(3):261-278. https://doi.org/10.1007/s11523-020-00717-x

3. Fukao A, Aoyama T, Fujiwara T. The molecular mechanism of translational control via the communication between the microRNA pathway and RNA-binding proteins. RNA Biol. 2015;12(9):922-926. https://doi.org/10.1080/15476286.2015.1073436

4. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155-D162. https://doi.org/10.1093/nar/gky1141

5. Singh RP, Massachi I, Manickavel S, Singh S, Rao NP, Hasan S, Mc Curdy DK, Sharma S, Wong D, Hahn BH, Rehimi H. The role of miRNA in inflammation and autoimmunity. Autoimmun Rev. 2013;12(12):1160-5. https://doi.org/10.1016/j.autrev.2013.07.003

6. O’Connell RM, Rao DS, Chaudhuri AA., Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111-122. https://doi.org/10.1038/nri2708

7. Li ZC, Han N, Li X, Li G, Liu YZ, Sun GX, Wang Y, Chen GT, Li GF. Decreased expression of microrna-130a correlates with TNFalpha in the development of osteoarthritis. Int J Clin Exp Pathol. 2015;8(3):2555-2564.

8. Nakasa T, Nagata Y, Yamasaki K, Ochi M. A mini-review: microRNA in arthritis. Physiol Genomics. 2011;43(10):566-570. https://doi.org/10.1152/physiolgenomics.00142.2010

9. Pivarcsi A, Ståhle M, Sonkoly E. Genetic polymorphisms altering microRNA activity in psoriasis--a key to solve the puzzle of missing heritability? Exp Dermatol. 2014;23(9):620-624. https://doi.org/10.1111/exd.12469

10. Løvendorf MB, Mitsui H, Zibert JR, Røpke MA, Hafner M, DyringAndersen B, Bonefeld CM, Krueger JG, Skov L.Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp Dermatol. 2015;24(3):187-193. https://doi.org/10.1111/exd.12604

11. Xiao S, Liu X, Wang X, Lv H, Zhao J, Guo X, Xian F, Ji Y, Zhang G. Plasma MicroRNA Expression Profiles in Psoriasis. J Immunol Res. 2020;2020:1561278. https://doi.org/10.1155/2020/1561278

12. Haschka J, Simon D, Bayat S, Messner Z, Kampylafka E, Fagni F, Skalicky S, Hackl M, Resch H, Zwerina J, Kleyer A, Cavallaro A, Sticherling M, Schett G, Kocijan R, Rech J.Identification of circulating microRNA patterns in patients in psoriasis and psoriatic arthritis. Rheumatology (Oxford). 2023;62(10):3448-3458. https://doi.org/10.1093/rheumatology/kead059

13. Villani AP, Rouzaud M, Sevrain M, Barnetche T, Paul C, Richard MA, Beylot-Barry M, Misery L, Joly P, Le Maitre M, Aractingi S, Aubin F, Cantagrel A, Ortonne JP, Jullien D. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: Systematic review and meta-analysis. J Am Acad Dermatol. 2015;73:242-248. https://doi.org/10.1016/j.jaad.2015.05.001

14. Korotaeva TV, Korsakova YuL, Loginova EYu, Gubar EE, Chamurlieva MN. Psoriatica rthritis.Clinical guidelines for diagnosis and treatment. Modern Rheumatology Journal. 2018;12(2):22-35. (In Russ). https://doi.org/10.14412/1996-7012-2018-2-22-35

15. Ocampo DV, Gladman D. Psoriatic arthritis. F1000Res 2019;8:(F1000 Faculty Rev):1665. https://doi.org/10.12688/f1000research.19144.1

16. Coates LC, Helliwell PS. Psoriatic arthritis: state of the art review. Clin Med (Lond). 2017;17(1):65-70. https://doi.org/10.7861/clinmedicine.17-1-65

17. Olivieri I, Padula A, D’Angelo S, Cutro MS. Psoriatic arthritis sine psoriasis. J Rheumatol Suppl. 2009;83:28-29. https://doi.org/10.3899/jrheum.090218

18. Pasquali L, Svedbom A, Srivastava A, Rosén E, Lindqvist U, Ståhle M, Pivarcsi A, Sonkoly E.Circulating microRNAs in extracellular vesicles as potential biomarkers for psoriatic arthritis in patients with psoriasis. J Eur Acad Dermatol Venereol. 2019;34(6):1248-1256. https://doi.org/10.1111/jdv.16203

19. Haroon M, Gallagher P, FitzGerald O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann Rheum Dis. 2015;74:1045-1050. https://doi.org/10.1136/annrheumdis-2013-204858

20. Lättekivi F, Guljavina I, Midekessa G, Viil J, Heath PR, Bæk R, Jørgensen MM, Andronowska A, Kingo K, Fazeli A. Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. Int J Mo. Sci. 2022;23(7):4005. https://doi.org/10.3390/ijms23074005

21. Mc Ardle A, Flatley B, Pennington SR, FitzGerald O. Early biomarkers of joint damage in rheumatoid and psoriatic arthritis. Arthritis Res Ther. 2015;17(1):141. https://doi.org/10.1186/s13075- 015-0652-z

22. Generali E, Scirè CA, Favalli EG, Selmi C. Biomarkers in psoriatic arthritis: A systematic literature review. Expert Rev Clin Immunol. 2016;12:651-660. https://doi.org/10.1586/1744666X.2016.1147954

23. Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. 2005;2005(5):273-279. https://doi.org/10.1155/MI.2005.273

24. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130(5):1373-1383. https://doi.org/10.1038/jid.2009.399

25. Eder L, Jayakar J, Pollock R, Pellett F, Thavaneswaran A, Chandran V, Rosen CF, Gladman DD. Serum adipokines in patients with psoriatic arthritis and psoriasis alone and their correlation with disease activity. Ann Rheum Dis. 2013;72(12):1956-1961. https://doi.org/10.1136/annrheumdis-2012-202325

26. Chandran V, Cook RJ, Edwin J, Shen H, Pellett FJ, Shanmugarajah S, Rosen CF, Gladman DD. Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology (Oxford). 2010;49(7):1399-1405. https://doi.org/10.1093/rheumatology/keq105

27. Sokolova MV, Simon D, Nas K, Zaiss MM, Luo Y, Zhao Y, Rech J, Schett G. A set of serum markers detecting systemic inflammation in psoriatic skin, entheseal, and joint disease in the absence of C-reactive protein and its link to clinical disease manifestations. Arthritis Res Ther. 2020;22(1):26. https://doi.org/10.1186/s13075-020-2111-8

28. Tamagawa-Mineoka R, Katoh N, Kishimoto S. Platelet activation in patients with psoriasis: Increased plasma levels of plateletderived microparticles and soluble P-selectin. J Am Acad Dermatol. 2010;62:621-626. https://doi.org/10.1016/j.jaad.2009.06.053

29. Bos F, Capsoni F, Molteni S, Raeli L, Diani M, Altomare A, GaravagliaM, Garutti C, Frigerio E, Banfi G, Altomare G, Reali E. Differential expression of interleukin-2 by anti-CD3-stimulated peripheral blood mononuclear cells in patients with psoriatic arthritis and patients with cutaneous psoriasis. Clin Exp Dermatol. 2014;39:385-390. https://doi.org/10.1111/ced.12251

30. Wade SM, McGarry T, Wade SC, Fearon U, Veale DJ. Serum MicroRNA signature as a diagnostic and therapeutic marker in patients with psoriatic arthritis. J Rheumatol. 2020;47:1760-1767. https://doi.org/10.3899/jrheum.190602

31. Wade SM, McGarry T, Wade SC, Fearon U, Veale DJ. Serum MicroRNA Signature as a Diagnostic and Therapeutic Marker in Patients with Psoriatic Arthritis. J Rheumatol. 2020;47(12):1760- 1767. https://doi.org/10.3899/jrheum.190602

32. Paek SY, Han L, Weiland M, Lu CJ, McKinnon K, Zhou L, Lim HW, Elder JT, Mi QS. Emerging biomarkers in psoriatic arthritis. IUBMB Life. 2015;67(12):923-927. https://doi.org/10.1002/iub.1453

33. Alberro A, Iparraguirre L, Fernandes A, Otaegui D. Extracellular vesicles in blood: Sources, effects, and applications. Int J Mol Sci. 2021;22:8163. https://doi.org/10.3390/ijms22158163

34. Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M, Joenväärä S, Renkonen R, Nieuwland R, Takatalo M, Siljander PRM. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery. PLoS One. 2020;15(8):e0236439. https://doi.org/10.1371/journal.pone.0236439

35. Wade SM, Trenkmann M, McGarry T, Canavan M, Marzaioli V, Wade SC, Veale DJ, Fearon U. Altered expression of microRNA-23a in psoriatic arthritis modulates synovial fibroblast pro-inflammatory mechanisms via phosphodiesterase 4B. J Autoimmun. 2019;96:86-93 https://doi.org/10.1016/j.jaut.2018.08.008

36. Ciancio G, Ferracin M, Saccenti E, Bagnari V, Farina I, Furini F, Galuppi E, Zagatti B, Trotta F, Negrini M, Govoni M. Characterisation of peripheral blood mononuclear cell microRNA in early onset psoriatic arthritis. Clin Exp Rheumatol. 2017;35(1):113-121.

37. Villanova F, Di Meglio P, Nestle FO. Biomarkers in psoriasis and psoriatic arthritis. Ann Rheum Dis. 2013;72 Suppl 2:ii104-10. https://doi.org/10.1136/annrheumdis-2012-203037

38. Balzano F, Deiana M, Dei Giudici S, Oggiano A, Baralla A, Pasella S, Mannu A, Pescatori M, Porcu B, Fanciulli G, Zinellu A, Carru C, Deiana L. miRNA Stability in Frozen Plasma Samples. Molecules. 2015;20(10):19030-19040. https://doi.org/10.3390/molecules201019030

39. Cheleschi S, Tenti S, Bedogni G, Fioravanti A. Circulating Mir-140 and leptin improve the accuracy of the differential diagnosis between psoriatic arthritis and rheumatoid arthritis: a case-control study. Transl Res. 2022;239:18-34. https://doi.org/10.1016/j.trsl.2021.08.001

40. Bonek K, Kuca Warnawin E, Kornatka A, Plebańczyk M, Burakowski T, Maśliński W, Wisłowska M, Głuszko P, Ciechomska M. Circulating miRNA Correlates with Lipid Profile and Disease Activity in Psoriatic Arthritis, Rheumatoid Arthritis, and Ankylosing Spondylitis Patients. Biomedicines. 2022;10(4):893. https://doi.org/10.3390/biomedicines10040893

41. Mease PJ, Antoni CE, Gladman DD, Taylor WJ. Psoriatic arthritis assessment tools in clinical trials. Ann Rheum Dis. 2005;64 Suppl 2(Suppl 2):ii49-54. https://doi.org/10.1136/ard.2004.034165

42. Pelosi A, Lunardi C, Fiore PF, Tinazzi E, Patuzzo G, Argentino G, Moretta F, Puccetti A, Dolcino M. MicroRNA Expression Profiling in Psoriatic Arthritis. Biomed Res Int. 2018;2018:7305380. https://doi.org/10.1155/2018/7305380

43. Tillett W, Costa L, Jadon D, Wallis D, Cavill C, McHugh J, Korendowych E, McHugh N. The ClASsification for Psoriatic ARthritis (CASPAR) criteria--a retrospective feasibility, sensitivity, and specificity study. J Rheumatol. 2012;39(1):154-156. https://doi.org/10.3899/jrheum.110845

44. Su YJ. Early diagnosis of psoriatic arthritis among psoriasis patients: clinical experience sharing. Clin Rheumatol. 2020;39(12):3677- 3684. https://doi.org/10.1007/s10067-020-05132-1

45. Lin SH, Ho JC, Li SC, Cheng YW, Yang YC, Chen JF, Hsu CY, Nakano T, Wang FS, Yang MY, Lee CH, Hsiao CC. Upregulation of miR-941 in Circulating CD14+ Monocytes Enhances Osteoclast Activation via WNT16 Inhibition in Patients with Psoriatic Arthritis. Int J Mol Sci. 2020;21(12):4301. https://doi.org/10.3390/ijms21124301

46. Hu G, Zhang N, Li J, Wang J, Wu W, Li J, Tong W, Zhao X, Dai L, Zhang X. Tumor Necrosis Factor Receptor Associated Factor 3 Modulates Cartilage Degradation through Suppression of Interleukin 17 Signaling. Am J Pathol. 2020;190(8):1701-1712. https://doi.org/10.1016/j.ajpath.2020.04.016

47. Liu Z, Chen S, Yang Y, Lu S, Zhao X, Hu B, Pei H. MicroRNA-671-3p regulates the development of knee osteoarthritis by targeting TRAF3 in chondrocytes. Mol Med Rep. 2019;20(3):2843-2850. https://doi.org/10.3892/mmr.2019.10488

48. Costa V, De Fine M, Carina V, Conigliaro A, Raimondi L, De Luca A, Bellavia D, Salamanna F, Alessandro R, Pignatti G, Fini M, Giavaresi G. How miR-31-5p and miR-33a-5p Regulates SP1/CX43 Expression in Osteoarthritis Disease: Preliminary Insights. Int J Mol Sci. 2021;22(5):2471. https://doi.org/10.3390/ijms22052471.

49. Huang Z, Xing S, Liu M, Deng W, Wang Y, Huang Z, Huang Y, Huang X, Wu C, Guo X, Pan X, Jiang J, Feng F, Li T. MiR-26a- 5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Biosci Rep. 2019;39(7):BSR20182192. https://doi.org/10.1042/BSR20182192

50. Guo T, Ding H, Jiang H, Bao N, Zhou L, Zhao J. miR-338-5p Regulates the Viability, Proliferation, Apoptosis and Migration of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting NFAT5. Cell Physiol Biochem. 2018;49(3):899-910. https://doi.org/10.1159/000493222

51. Hussain N, Zhu W, Jiang C, Xu J, Geng M, Wu X, Hussain S, Wang B, Rajoka MSR, Li Y, Tian J, Meng L, Lu S. Down-regulation of miR- 10a-5p promotes proliferation and restricts apoptosis via targeting T-box transcription factor 5 in inflamed synoviocytes. Biosci Rep. 2018;38(2):BSR20180003. https://doi.org/10.1042/BSR20180003

52. Song AF, Kang L, Wang YF, Wang M. MiR-34a-5p inhibits fibroblast-like synoviocytes proliferation via XBP1. Eur Rev Med Pharmacol Sci. 2020;24:11675-11682. https://doi.org/10.26355/eurrev_202011_23812

53. Li HZ, Xu XH, Lin N, Wang DW, Lin YM, Su ZZ, Lu HD. Overexpression of miR-10a-5p facilitates the progression of osteoarthritis. Aging (Albany NY). 2020;12(7):5948-5976. https://doi.org/10.18632/aging.102989

54. Endisha H, Datta P, Sharma A, Nakamura S, Rossomacha E, Younan C, Ali SA, Tavallaee G, Lively S, Potla P, Shestopaloff K, Rockel JS, Krawetz R, Mahomed NN, Jurisica I, Gandhi R, Kapoor M. MicroRNA-34a-5p Promotes Joint Destruction During Osteoarthritis. Arthritis Rheumatol. 2021;73(3):426-439. https://doi.org/10.1002/art.41552

55. Motta F, Pederzani A, Carena MC, Ceribelli A, Wordsworth PB, De Santis M, Selmi C, Vecellio M. MicroRNAs in Axial Spondylarthritis: an Overview of the Recent Progresses in the Field with a Focus on Ankylosing Spondylitis and Psoriatic Arthritis. Curr Rheumatol Rep. 2021;23(8):59. https://doi.org/10.1007/s11926-021-01027-5.

56. Ciancio G, Ferracin M, Saccenti E, Bagnari V, Farina I, Furini F, Galuppi E, Zagatti B, Trotta F, Negrini M, Govoni M. Characterisation of peripheral blood mononuclear cell microRNA in early onset psoriatic arthritis. Clin Exp Rheumatol. 2017;35(1):113-121.

57. FitzGerald O, Behrens F, Barton A, Bertheussen H, BoutouyrieDumont B, Coates L, Davies O, de Wit M, Fagni F, Goodyear CS, Gurke R, Hahnefeld L, Huppertz C, Ioannidis V, Ibberson M, Katz A, Klippstein M, Koehm M, Korish S, Mackay S, Martin DA, O’Sullivan D, Patel K, Rueping S, Schett G, Scholich K, Schwenk JM, Siebert S, Simon D, Vivekanantham A, Pennington SR. Application of clinical and molecular profiling data to improve patient outcomes in psoriatic arthritis. Ther Adv Musculoskelet Dis. 2023;15:1759720X231192315. https://doi.org/10.1177/1759720X231192315

58. Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18(3):371-90. https://doi.org/10.1111/jcmm.12236

59. Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A. Circulating microRNAs in cancer: Hope or hype? Cancer Lett. 2016 Oct 10;381(1):113-21. https://doi.org/10.1016/j.canlet.2016.07.002


Review

For citations:


Shesternya P.A., Shnayder N.A., Filipenko D.E., Turchik E.V., Vasilieva А.О., Kapustina E.V. Pattern of Circulating Microrna's in Patients with Psoriatic Arthritis. Fundamental and Clinical Medicine. 2024;9(1):72-88. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-1-72-88

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)