Preview

Fundamental and Clinical Medicine

Advanced search

Oxytocin-mediated memory modulation in mice with an experimental model of Alzheimer's disease and chronic zinc acetate intoxication

https://doi.org/10.23946/2500-0764-2025-10-4-5-21

Abstract

Aim. To identify changes in cognitive function performance and endogenous oxytocin levels in various brain regions and biological fluids in mice with an experimental model of Alzheimer’s disease, chronic zinc acetate intoxication, and their combined effects. Materials and methods. CD-1 mice (n = 32). Chronic zinc acetate intoxication was modeled by administering Zn(CH3CO2)2 (Zn2+ concentration: 5 mg/L) as drinking water for 3 months; the control group received pure water. Alzheimer’s disease was modeled via intrahippocampal β-amyloid injection; the control group received phosphate-buffered saline. Associative memory was assessed using conditioned freezing testing. Oxytocin levels in brain regions and biological fluids were measured via ELISA. Results. Chronic zinc acetate intoxication and its combined effect with β-amyloid led to increased oxytocin levels in the hippocampus, entorhinal cortex, hypothalamic-pituitary region, and cerebrospinal fluid. β-Amyloid exposure either had no effect on oxytocin levels or caused a decrease (amygdala, blood plasma). Conditioned reflex formation and contextual memory were impaired in all experimental groups. Fear-associated memory in mice with the Alzheimer’s model combined with chronic zinc acetate intoxication did not differ from controls. Exposure to β-amyloid alone worsened fear-associated memory. Oxytocin levels in the amygdala correlated with changes in the mice’s ability to form fear memory. Conclusion. Chronic zinc acetate intoxication and its combination with β-amyloid increase oxytocin levels in nearly all examined brain regions and cerebrospinal fluid, likely as a compensatory response to Zn2+ neurotoxicity. Acute β-amyloid exposure did not cause significant changes. Thus, chronic zinc acetate exposure is the primary factor elevating oxytocin levels in the brain and biofluids. Increased oxytocin levels may contribute to the restoration of cognitive functions.

About the Authors

V. E. Tsypunov
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University; Siberian Federal University
Russian Federation

. Vitalii E. Tsypunov, junior researcher, Laboratory social
neuroscience, assistant, Department of Biological, Medicinal, Pharmaceutical, and Toxicological Chemistry; Postgraduate student, Department of biophysics

Partizan Zheleznyak Street, 1, Krasnoyarsk, 660022, Russian Federation

Svobodny Avenue, 79, Krasnoyarsk, 660041, Russian Federation



E. A. Pozhilenkova
Bauman Moscow State Technical University
Russian Federation

Elena A. Pozhilenkova, Cand. Sci. (Biology), Associate Professor, Department «Biomedical Engineering Systems», Senior researcher, Scientific and Educational Center «Soft Matterand Fluid Physics»

2-nd Baumanskaya, 5, Moscow, 105005, Russia



Ya. V. Gorina
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University; Siberian Federal University
Russian Federation

Yana V. Gorina – Dr. Sci. (Biology), Associate Professor, leading researcher, Laboratory of social neurosciences, Professor, Department of Biological, Medicinal, Pharmaceutical, and Toxicological Chemistry

Partizan Zheleznyak Street, 1, Krasnoyarsk, 660022, Russian Federation

Svobodny Avenue, 79, Krasnoyarsk, 660041, Russian Federation



O. L. Lopatina
Professor V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University; Siberian Federal University
Russian Federation

Olga L. Lopatina – Dr. Sci. (Biology), Associate Professor, Head, Laboratory of social neurosciences, Professor, Department of Biological, Medicinal, Pharmaceutical, and Toxicological Chemistry; Professor, Department of biophysics

Partizan Zheleznyak Street, 1, Krasnoyarsk, 660022, Russian Federation

Svobodny Avenue, 79, Krasnoyarsk, 660041, Russian Federation



References

1. Scheltens P., De Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C.E., et al. Alzheimer's disease. The Lancet. 2021;397(10284):1577–1590. https://doi.org/10.1016/s0140-6736(20)32205-4

2. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R. Jr., Kawas C.H., et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzhei mer's disease. Alzheimer's dementia. 2011;7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

3. Jack C.R. Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., et al. NIA‐AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's dementia. 2018;14(4):535–562. https://doi.org/10.1016/j.jalz.2018.02.018

4. Ali M.U., Anwar L., Ali M.H., Iqubal M.K., Iqubal A., Baboota S., et al. Signalling pathways involved in microglial activation in Alzheimer’s disease and potential neuroprotective role of phytoconstituents. CNS Neurol. Disord. Drug. Targets. 2024;23(7):819–840. https://doi.org/10.2174/1871527322666221223091529

5. Dehkordi M.M., Nodeh Z.P., Dehkordi K.S., Khorjestan R.R., Ghaffarzadeh M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results. Eng. 2024; 23(31):102729. https://doi.org/10.1016/j.rineng.2024.102729

6. Liu H.Y., Gale J.R., Reynolds I.J., Weiss J.H., Aizenman E. The multifaceted roles of zinc in neuronal mitochondrial dysfunction. Biomedicines. 2021;9(5):489. https://doi.org/10.3390/biomedicines9050489

7. Pan R., Liu K.J., Qi Z. Zinc causes the death of hypoxic astrocytes by inducing ROS production through mitochondria dysfunction. Biophysics Reports. 2019;5:209–217. https://doi.org/10.1007/s41048-019-00098-3

8. Cheng H., Yang B., Ke T., Li S., Yang X., Aschner M., et al. Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics. 2021;9(6):142. https://doi.org/10.3390/toxics9060142

9. Bush A.I., Pettingell W.H., Multhaup G., d Paradis M., Vonsattel J.P., Gusella J.F., et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994;265(5177):1464–1467. https://doi.org/10.1126/science.8073293

10. An W.L., Bjorkdahl C., Liu R., Cowburn R.F., Winblad B., Pei J.J. Mechanism of zinc‐induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3β in SH‐SY5Y neuroblastoma cells. J. Neurochem. 2005;92(5):1104–1115. https://doi.org/10.1111/j.1471-4159.2004.02948.x

11. Boom A., Authelet M., Dedecker R., Frйdйrick C., Van Heurck R., Daubie V., et al. Bimodal modulation of tau protein phosphorylation and conformation by extracellular Zn2+ in human-tau transfected cells. Biochim. Biophys. Acta. 2009;1793(6):1058–1067. https://doi.org/10.1016/j.bbamcr.2008.11.011

12. Mo Z.Y., Zhu Y.Z., Zhu H.L., Fan J.B., Chen J., Liang Y. Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J. Biol. Chem. 2009;284(50):34648–34657. https://doi.org/10.1074/jbc.m109.058883

13. El-Ganainy S.O., Soliman O.A., Ghazy A.A., Allam M., Elbahnasi A.I., Mansour A.M. et al. Intranasal oxytocin attenuates cognitive impairment, β-amyloid burden and tau deposition in female rats with Alzheimer’s disease: interplay of ERK1/2/GSK3β/caspase-3. Neurochem. research. 2022;47(8):2345–2356. https://doi.org/10.1007/s11064-022-03624-x

14. Selles M.C., Fortuna J.T. S., de Faria Y.P. R., Siqueira L.D., Lima-Filho R., Longo B.M., et al. Oxytocin attenuates microglial activation and restores social and non-social memory in APP/PS1 Alzheimer model mice. Iscience. 2023;26(4):106545. https://doi.org/10.1016/j.isci.2023.106545

15. Inoue T., Yamakage H., Tanaka M., Kusakabe T., Shimatsu A., Satoh-Asahara N. Oxytocin suppresses inflammatory responses induced by lipopolysaccharide through inhibition of the eIF-2б–ATF4 pathway in mouse microglia. Cells. 2019;8(6):527. https://doi.org/10.3390/cells8060527

16. Авлиякулыева А. М., Киндякова Е. К., Кузьмина С. В., Горина Я. В., Лопатина О. Л. Роль нейропептидов (окситоцин, вазопрессин, нейропептид S) в развитии когнитивных нарушений при болезни Альцгеймера. Бюллетень сибирской медицины. 2024;23(1):105–115. https://doi.org/10.20538/1682-0363-2024-1-105-115

17. Neumann I.D. Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J. Neuroendocrinol. 2008;20(6):858–865. https://doi.org/10.1111/j.1365-2826.2008.01726.x

18. Иптышев А. М., Горина Я. В., Лопатина О. Л., Комлева Ю. К., Салмина А. Б. Экспериментальные модели болезни Альцгеймера: преимущества и недостатки. Сибирское медицинское обозрение. 2016;4(100):5–21.

19. Gorina Y. V., Komleva Y. K., Lopatina O. L., Volkova V. V., Chernykh A. I., Shabalova A. A., et al. The battery of tests for experimental behavioral phenotyping of aging animals. Adv. Gerontol. 2017;7:137–142. https://doi.org/10.1134/S2079057017020060

20. Paxinos G., Franklin's Keith B.J. Paxinos and The mouse brain in stereotaxic coordinates. 5th Edition. Elsevier Academic Press; 2019.

21. Etehadi Moghadam S., Azami Tameh A., Vahidinia Z., Atlasi M.A., Hassani Bafrani H., Naderian H. Neuroprotective Effects of Oxytocin Hormone after an Experimental Stroke Model and the Possible Role of Calpain-1. J. Stroke Cerebrovasc. Dis. 2018;27(3):724–732. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.020

22. Momenabadi S., Vafaei A.A., Bandegi A.R., Zahedi-Khorasani M., Mazaheri Z., Vakili A. Oxytocin reduces brain injury and maintains blood–brain barrier integrity after ischemic stroke in mice. Neuromolecular med. 2020;22(4):557–571. https://doi.org/10.1007/s12017-020-08613-3

23. Yuan L., Liu S., Bai X., Gao Y., Liu G., Wang X., et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflammat. 2016;13(1):77. https://doi.org/10.1186/s12974-016-0541-7

24. Karelina K., Stuller K.A., Jarrett B., Zhang N., Wells J., Norman G.J., et al. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke. 2011;42(12):3606–3611. https://doi.org/10.1161/strokeaha.111.628008

25. Shechner T., Hong M., Britton J.C., Pine D.S., Fox N.A. Fear conditioning and extinction across development: evidence from human studies and animal models. Biol. Psychol. 2014;100:1–12. https://doi. org/10.1016/j.biopsycho.2014.04.001

26. Haddad-Tуvolli R., Dragano N.R. V., Ramalho A.F. S., Velloso L.A. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front. Neurosci. 2017;11:224. https://doi.org/10.3389/fnins.2017.00224

27. Andrade V.M., Aschner M., Marreilha Dos Santos A.P. Neurotoxicity of Metal Mixtures. Adv. Neurobiol. 2017;18:227–265. https://doi.org/10.1007/978-3-319-60189-2_12

28. Ding J., Sun B., Gao Y., Zheng J., Liu C., Huang J., et al. Evidence for chromium crosses blood brain barrier from the hypothalamus in chromium mice model. Ecotoxicol. Environmen. Saf. 2024;273:116179. https://doi.org/10.1016/j.ecoenv.2024.116179

29. Landgraf R., Neumann I.D. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 2004;25(3-4):150–176. https://doi.org/10.1016/j.yfrne.2004.05.001

30. Valstad M., Alvares G.A., Egknud M., Matziorinis A.M., Andreassen O.A., Westlye L.T., et al. The correlation between central and peripheral oxytocin concentrations: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017;78:117–124. https://doi.org/10.1016/j.neubiorev.2017.04.017

31. Babygirija R., Bьlbьl M., Yoshimoto S., Ludwig K., Takahashi T. Central and peripheral release of oxytocin following chronic homotypic stress in rats. Auton. Neurosci. 2012;167(1-2):56–60. https://doi.org/10.1016/j.autneu.2011.12.005

32. Handlin L., Novembre G., Lindholm H., Kдmpe R., Paul E., Morrison I. Human endogenous oxytocin and its neural correlates show adaptive responses to social touch based on recent social context. Elife. 2023;12:eLife.81197. https://doi.org/10.7554/elife.81197

33. Rokicki J., Kaufmann T., de Lange A.G., van der Meer D., Bahrami S., Sartorius A.M., et al. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology. 2022;47(8):1550–1560. https://doi.org/10.1038/s41386-022-01305-5

34. Gimpl G., Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 2001;81(2):629–683. https://doi.org/10.1152/physrev.2001.81.2.629

35. Althammer F., Eliava M., Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. Handb. Clin. Neurol. 2021;180:25–44. https://doi.org/10.1016/b978-0-12-820107-7.00003-3

36. Leckman J.F. Variations in maternal behavior--oxytocin and reward pathways--peripheral measures matter?! Neuropsychopharmacology. 2011;36(13):2587–2588. https://doi.org/10.1038/npp.2011.201

37. Freeman S.M., Samineni S., Allen P.C., Stockinger D., Bales K.L., Hwa G.G., et al. Plasma and CSF oxytocin levels after intranasal and intravenous oxytocin in awake macaques. Psychoneuroendocrinology. 2016;66:185–194. https://doi.org/10.1016/j.psyneuen.2016.01.014

38. Coppeto D.J., Martin J.S., Ringen E.J., Palmieri V., Young L.J., Jaeggi A.V. Peptides and primate personality: Central and peripheral oxytocin and vasopressin levels and social behavior in two baboon species (Papio hamadryas and Papio anubis). Peptides. 2024;179:171270. https://doi.org/10.1016/j.peptides.2024.171270

39. Parmaksiz D., Kim Y. Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. The Neuroscientist 2024;31(3):234–261. https://doi.org/10.1177/10738584241268754

40. Froemke R.C., Young L.J. Oxytocin, Neural Plasticity, and Social Behavior. Annu. Rev. Neurosci. 2021;44:359–381. https://doi.org/10.1146/annurev-neuro-102320-102847

41. Rigney N., de Vries G.J., Petrulis A., Young L.J. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology. 2022;163(9):bqac111. https://doi.org/10.1210/endocr/bqac111

42. Yao S., Kendrick K.M. How does oxytocin modulate human behavior? Mol. psychiatry. 2025;30(4):1639–1651. https://doi.org/10.1038/s41380-025-02898-1

43. Walia V., Wal P., Mishra S., Agrawal A., Kosey S., Dilipkumar Patil A. Potential role of oxytocin in the regulation of memories and treatment of memory disorders. Peptides. 2024;177:171222. https://doi.org/10.1016/j.peptides.2024.171222

44. Zhan S., Qi Z., Cai F., Gao Z., Xie J., Hu J. Oxytocin neurons mediate stress-induced social memory impairment. Curr. Biol. 2024;34(1):36–45.e4. https://doi.org/10.1016/j.cub.2023.11.037

45. Haass C., Selkoe D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007;8(2):101–112. https://doi.org/10.1038/nrm2101

46. Sheline C.T., Behrens M.M., Choi D.W. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J. Neurosci. 2000;20(9):3139–3146. https://doi.org/10.1523/jneurosci.20-09-03139.2000

47. Ehrlich I., Humeau Y., Grenier F., Ciocchi S., Herry C., Lьthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62(6):757–771. https://doi.org/10.1016/j.neuron.2009.05.026

48. Jiang J., Zou Y., Xie C., Yang M., Tong Q., Yuan M., et al. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain, Behav. Immun. 2023;114:195–213. https://doi.org/10.1016/j.bbi.2023.08.023

49. Lahoud N., Maroun M. Oxytocinergic manipulations in corticolimbic circuit differentially affect fear acquisition and extinction. Psychoneuroendocrinology. 2013;38(10):2184–2195. https://doi.org/10.1016/j.psyneuen.2013.04.006


Review

For citations:


Tsypunov V.E., Pozhilenkova E.A., Gorina Ya.V., Lopatina O.L. Oxytocin-mediated memory modulation in mice with an experimental model of Alzheimer's disease and chronic zinc acetate intoxication. Fundamental and Clinical Medicine. 2025;10(4):5-21. (In Russ.) https://doi.org/10.23946/2500-0764-2025-10-4-5-21

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)