Preview

Фундаментальная и клиническая медицина

Расширенный поиск

Химические механизмы действия холодной плазмы на клетки

https://doi.org/10.23946/2500-0764-2020-5-4-104-115

Аннотация

Холодная плазма (ХП) в воздухе над поверхностью суспензий клеток или биологических тканей рассматривается как генератор активных форм кислорода и азота, ионов, сольватированных/акватированных электронов. В обзоре литературы проанализированы современные представления о реализации эффектов ХП в живых системах (с акцентом на роль свободных радикалов и других частиц, генерируемых ХП, в химической модификации биомакромолекул и регуляции сигнальной трансдукции в клетках). Обобщены данные о влиянии продуктов ХП на внутриклеточный окислительно-восстановительный баланс, митохондриальный биогенез, а также клеточные мембраны и органеллы. Обсуждаются ключевые механизмы транспорта продуктов ХП через биологические мембраны с участием механизмов активного транспорта и диффузии. Предполагается, что экспрессия различных транспортных систем будет существенным образом отличаться в клетках на разных стадиях развития, с разным пролиферативным потенциалом, а также в условиях патологии, что определяет важность экспериментальных исследований на разнообразных модельных клеточных системах для оценки того, насколько данная популяция клеток чувствительна к эффектам продуктов, генерируемых ХП. Обсуждаются варианты распространения эффектов ХП вглубь ткани, если генерируемые ХП короткоживущие частицы действуют на клетки ткани с ее поверхности. Приведены данные о том, что воздействие ХП на ткань может быть осуществлено не только непосредственно разрядом, но и растворами, обработанными ХП (фосфатный буфер, раствор Рингера, питательная среда), состав и рН которых после обработки ХП будут существенно различаться, что определяет новые возможности применения самой ХП и растворов, обработанных ХП, в медицине. Изучение молекулярных механизмов действия ХП на биологические системы включает анализ событий, связанных с генерацией и аккумуляцией активных форм кислорода, нейтральных соединений, сольватированных электронов, идентификацию новых клеточных мишеней их действия, что обеспечит создание эффективных и безопасных протоколов применения ХП в биологии и медицине.

Об авторах

Р. Я. Оловянникова
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Оловянникова Раиса Яковлевна, кандидат биологических наук, доцент, доцент кафедры биологической химии с курсом медицинской, фармацевтической и токсикологической химии

660022, г. Красноярск, Партизана Железняка ул., 1



Т. А. Макаренко
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Макаренко Татьяна Александровна, доктор медицинских наук, заведующий кафедрой оперативной гинекологии института последипломного образования

660022, г. Красноярск, Партизана Железняка ул., 1



Е. В. Лычковская
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Лычковская Елена Викторовна, старший преподаватель кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии

660022, г. Красноярск, Партизана Железняка ул., 1



Е. С. Гудкова
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Гудкова Елизавета Сергеевна, лаборант лаборатории медицинской кибернетики и управления в здравоохранении

660022, г. Красноярск, Партизана Железняка ул., 1



Г. А. Мурадян
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Мурадян Гоар Аматуновна, лаборант лаборатории медицинской кибернетики и управления в здравоохранении

660022, г. Красноярск, Партизана Железняка ул., 1



Н. Н. Медведева
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Медведева Надежда Николаевна, доктор медицинских наук, профессор, заведующая кафедрой анатомии человека

660022, г. Красноярск, Партизана Железняка ул., 1



Т. Н. Чекишева
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Чекишева Татьяна Николаевна, ассистент кафедры гистологии, цитологии, эмбриологии

660022, г. Красноярск, Партизана Железняка ул., 1

 



С. И. Бердников
ФГБУ «Федеральный Сибирский научно-клинический центр Федерального медико-биологического агентства»
Россия

Бердников Сергей Иванович, врач-эндоскопист

660037, г. Красноярск, Коломенская ул., 26



Е. В. Семичев
ФГБУ «Федеральный Сибирский научно-клинический центр Федерального медикобиологического агентства»
Россия

Семичев Евгений Васильевич, доктор медицинских наук, врачэндоскопист, руководитель научного отдела

60037, г. Красноярск, Коломенская ул., 26



Н. А. Малиновская
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Малиновская Наталия Александровна, доктор медицинских наук, профессор кафедры биологической химии с курсом медицинской, фармацевтической и токсикологической химии, старший научный сотрудник научно-исследовательского института молекулярной медицины и патобиохимии

660022, г. Красноярск, Партизана Железняка ул., 1

 



А. Б. Салмина
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. ВойноЯсенецкого» Министерства здравоохранения Российской Федерации
Россия

Салмина Алла Борисовна, доктор медицинских наук, заведующая кафедрой биологической химии с курсом медицинской, фармацевтической и токсикологической химии, руководитель научно-исследовательского института молекулярной медицины и патобиохимии

660022, г. Красноярск, Партизана Железняка ул., 1

 



В. В. Салмин
ФГБОУ ВО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации
Россия

Салмин Владимир Валерьевич, доктор физико-математических наук, заведующий кафедрой медицинской и биологической физики

660022, г. Красноярск, Партизана Железняка ул., 1

 



Список литературы

1. Gopalakrishnan R, Kawamura E, Lichtenberg AJ, Lieberman MA, Graves D. Solvated electrons at the atmospheric pressure plasma-water anodic interface. Journal of Physics D: Applied Physics. 2016;49(29). https://doi.org/10.1088/0022- 3727/49/29/295205

2. Rumbach P, Bartels DM, Sankaran RM, Go DB. The solvation of electrons by an atmospheric-pressure plasma. Nature communications. 2015;6(1):7248. https://doi.org/10.1038/ ncomms8248

3. Farasat M, Arjmand S, Ranaei Siadat SO, Sefidbakht Y, Ghomi H. The effect of non-thermal atmospheric plasma on the production and activity of recombinant phytase enzyme. Scientific Reports. 2018;8(1):16647. https://doi.org/10.1038/ s41598-018-34239-4

4. Attri P, Kumar N, Park JH, Yadav DK, Choi S, Uhm HS, Kim IT, Choi EH, Lee W. Influence of reactive species on the modification of biomolecules generated from the soft plasma. Scientific Reports. 2015;5(1):8221. https://doi.org/10.1038/ srep08221

5. Pai K, Timmons C, Roehm KD, Ngo A, Narayanan SS, Ramachandran A, Jacob JD, Ma LM, Madihally SV. Investigation of the Roles of Plasma Species Generated by Surface Dielectric Barrier Discharge. Scientific Reports. 2018;8(1):16674. https://doi.org/10.1038/s41598-018-35166-0

6. Park JH, Kim M, Shiratani M, Cho AE, Choi EH, Attri P. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet. Scientific Reports. 2016;6(1):35883. https://doi. org/10.1038/srep35883

7. Yayci A, Baraibar ÁG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. Chem Sus Chem. 2020;13(8):2072-2079. https://doi.org/10.1002/ cssc.201903438

8. Rezaeinezhad A, Eslami P, Mirmiranpour H, Ghomi H. The effect of cold atmospheric plasma on diabetes-induced enzyme glycation, oxidative stress, and inflammation; in vitro and in vivo. Scientific Reports. 2019;9(1):19958. https://doi. org/10.1038/s41598-019-56459-y

9. González-Mendoza B, López-Callejas R, Rodríguez-Méndez BG, Eguiluz RP, Mercado-Cabrera A, Valencia-Alvarado R, Betancourt-Ángeles M, Reyes-Frías MdL, Reboyo-Barrios D, Chávez-Aguilar E. Healing of wounds in lower extremities employing a non-thermal plasma. Clinical Plasma Medicine. 2019;16:100094. https://doi.org/https://doi.org/10.1016/j. cpme.2020.100094

10. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Science and Technolog. 2014;23(1):015019. https://doi.org/10.1088/0963- 0252/23/1/015019

11. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD. Nonthermal DielectricBarrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy. 2011;55(3):1053-1062. https://doi. org/10.1128/aac.01002-1

12. Guo L, Xu R, Gou L, Liu Z, Zhao Y, Liu D, Zhang L, Chen H, Kong MG. Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Applied and environmental microbiology. 2018;84(17):e00726- 18. https://doi.org/10.1128/aem.00726-18

13. Panngom K, Baik KY, Nam MK, Han JH, Rhim H, Choi EH. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death & Disease. 2013;4(5):e642-e642. https://doi.org/10.1038/cddis.2013.168

14. Kim J, Kim JH, Chang B, Choi EH, Park H-K. Hemorheological alterations of red blood cells induced by non-thermal dielectric barrier discharge plasma. Applied Physics Letters. 2016;109(19):193701. https://doi.org/10.1063/1.4967451

15. Arjunan KP, Friedman G, Fridman A, Clyne AM. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. Journal of The Royal Society Interface. 2012;9(66):147-157. https://doi.org/doi:10.1098/rsif.2011.0220

16. Zhang J-P, Guo L, Chen Q-L, Zhang K-Y, Wang T, An G-Z, Zhang X-F, Li H-P, Ding G-R. Effects and mechanisms of cold atmospheric plasma on skin wound healing of rats. Contributions to Plasma Physics. 2019;59(1):92-101. https:// doi.org/10.1002/ctpp.201800025

17. Bourdens M, Jeanson Y, Taurand M, Juin N, Carrière A, Clément F, Casteilla L, Bulteau A-L, Planat-Bénard V. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Scientific Reports. 2019;9(1):8671-8671. https://doi. org/10.1038/s41598-019-45191-2

18. Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. International Journal of Molecular Sciences. 2020;21(8):2932. https://doi.org/10.3390/ijms21082932

19. Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy P-A, Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019;8(8):793. https://doi.org/10.3390/cells8080793

20. Valero T, Moschopoulou G, Mayor-Lopez L, Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochemistry International. 2012;61(8):1333-1343. https://doi.org/https://doi.org/10.1016/j.neuint.2012.09.010

21. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Molecular cell. 2012;48(2):158-167. https://doi.org/10.1016/j.molcel.2012.09.025

22. Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016;60(2):108-114. https://doi.org/10.1016/j. ceca.2016.03.004

23. Eisenhauer P, Chernets N, Song Y, Dobrynin D, Pleshko N, Steinbeck MJ, Freeman TA. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation. Journal of Tissue Engineering and Regenerative Medicine. 2016;10(9):772-782. https://doi.org/10.1002/term.2224

24. Mouthuy PA, Snelling SJB, Dakin SG, Milković L, Gašparović A, Carr AJ, Žarković N. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials. 2016;109:55-68. https://doi.org/10.1016/j. biomaterials.2016.09.010

25. Tero R, Yamashita R, Hashizume H, Suda Y, Takikawa H, Hori M, Ito M. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species. Archives of Biochemistry and Biophysics. 2016;605:26- 33. https://doi.org/https://doi.org/10.1016/j.abb.2016.05.014

26. Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal of Physics D: Applied Physics. 2014;47(28):285403. https://doi.org/10.1088/0022- 3727/47/28/285403

27. Śmiłowicz D, Kogelheide F, Stapelmann K, Awakowicz P, Metzler-Nolte N. Study on Chemical Modifications of Glutathione by Cold Atmospheric Pressure Plasma (Cap) Operated in Air in the Presence of Fe(II) and Fe(III) Complexes. Scientific Reports. 2019;9(1):18024. https://doi.org/10.1038/ s41598-019-53538-y

28. Van Boxem W, Van der Paal J, Gorbanev Y, Vanuytsel S, Smits E, Dewilde S, Bogaerts A. Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Sci Rep. 2017;7(1):16478. https://doi. org/10.1038/s41598-017-16758-8

29. Teratani T, Tomita K, Toma-Fukai S, Nakamura Y, Itoh T, Shimizu H, Shiraishi Y, Sugihara N, Higashiyama M, Shimizu T, Inoue I, Takenaka Y, Hokari R, Adachi T, Shimizu T, Miura S, Kanai T. Redox-dependent PPARγ/Tnpo1 complex formation enhances PPARγ nuclear localization and signaling. Free Radical Biology and Medicine. 2020;156:45-56. https:// doi.org/https://doi.org/10.1016/j.freeradbiomed.2020.06.005

30. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Molecular cell. 2007;26(1):1-14. https://doi. org/10.1016/j.molcel.2007.03.016

31. Hong S-H, Szili EJ, Jenkins ATA, Short RD. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics D: Applied Physics. 2014;47(36):362001. https://doi.org/10.1088/0022-3727/47/36/362001

32. Marshall SE, Jenkins ATA, Al-Bataineh SA, Short RD, Hong S-H, Thet NT, Oh J-S, Bradley JW, Szili EJ. Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix. Journal of Physics D: Applied Physics. 2013;46(18):185401. https://doi.org/10.1088/0022-3727/46/18/185401

33. Lu X, Keidar M, Laroussi M, Choi E, Szili EJ, Ostrikov K. Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering: R: Reports. 2019;138:36-59. https://doi.org/https://doi.org/10.1016/j. mser.2019.04.002

34. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol Biol Cell. 2007;18(6):2002-2012. https://doi.org/10.1091/mbc.e06-09-0830

35. Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Advanced drug delivery reviews. 2020:S0169-409X(20)30059-4. https://doi. org/10.1016/j.addr.2020.06.013

36. Mumbengegwi DR, Li Q, Li C, Bear CE, Engelhardt JF. Evidence for a superoxide permeability pathway in endosomal membranes. Molecular and cellular biology. 2008;28(11):3700- 3712. https://doi.org/10.1128/mcb.02038-07

37. Qi Y, Mair N, Kummer KK, Leitner MG, Camprubí-Robles M, Langeslag M, Kress M. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl(-) Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons. Frontiers in Molecular Neuroscience. 2018;11:33-33. https:// doi.org/10.3389/fnmol.2018.00033

38. Hong S, Bi M, Wang L, Kang Z, Ling L, Zhao C. CLC-3 channels in cancer (review). Oncol Rep. 2015;33(2):507-514. https://doi.org/10.3892/or.2014.3615

39. Denicola A, Souza JM, Radi R. Diffusion of peroxynitrite across erythrocyte membranes. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(7):3566- 3571. https://doi.org/10.1073/pnas.95.7.3566

40. Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2006;1758(8):994-1003. https://doi.org/ https://doi.org/10.1016/j.bbamem.2006.02.015

41. Yusupov M, Razzokov J, Cordeiro RM, Bogaerts A. Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. Oxidative Medicine and Cellular Longevity. 2019;2019: 2930504. https://doi. org/10.1155/2019/2930504

42. Cordeiro RM. Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2014;1838(1, Part B):438-444. https://doi.org/https://doi.org/10.1016/j. bbamem.2013.09.016

43. Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6(1):e16270. https://doi.org/10.1371/journal. pone.0016270

44. Möller MN, Cuevasanta E, Orrico F, Lopez AC, Thomson L, Denicola A. Diffusion and Transport of Reactive Species Across Cell Membranes. Adv Exp Med Biol. 2019;1127:3-19. https://doi.org/10.1007/978-3-030-11488-6_1

45. Figueroa XF, Lillo MA, Gaete PS, Riquelme MA, Sáez JC. Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology. 2013;75:471-478. https://doi. org/10.1016/j.neuropharm.2013.02.022

46. Chow CW, Kapus A, Romanek R, Grinstein S. NO3-- induced pH changes in mammalian cells. Evidence for an NO3--H+ cotransporter. The Journal of general physiology. 1997;110(2):185-200. https://doi.org/10.1085/jgp.110.2.185

47. Zhao H, Xu X, Ujiie K, Star RA, Muallem S. Transport and interaction of nitrogen oxides and NO2 with CO2-HCO3- transporters in pancreatic acini. Am J Physiol. 1994;267(2 Pt 1):C385-393. https://doi.org/10.1152/ajpcell.1994.267.2.C385

48. Peeters PM, Wouters EF, Reynaert NL. Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed. Journal of immunology research. 2015;2015:828264- 828264. https://doi.org/10.1155/2015/828264

49. Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas M, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res. 2016;108:46-56. https:// doi.org/10.1016/j.phrs.2016.03.038

50. Salmina AB, Morgun AV, Kuvacheva NV, Lopatina OL, Komleva YK, Malinovskaya NA, Pozhilenkova EA. Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev Neurosci. 2014;25(1):97-111. https:// doi.org/10.1515/revneuro-2013-0044

51. Hoorelbeke D, Decrock E, De Smet M, De Bock M, Descamps B, Van Haver V, Delvaeye T, Krysko DV, Vanhove C, Bultynck G, Leybaert L. Cx43 channels and signaling via IP(3)/Ca(2+), ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death Dis. 2020;11(3):194. https://doi.org/10.1038/s41419- 020-2392-5

52. Xu R-G, Chen Z, Keidar M, Leng Y. The impact of radicals in cold atmospheric plasma on the structural modification of gap junction: a reactive molecular dynamics study. International Journal of Smart and Nano Materials. 2019;10(2):44-155. https://doi.org/10.1080/19475411.2018.1541936

53. Zucker SN, Higley C, Koch Z, Goli H, Casey P, Francis A, Burke K, Zirnheld J. Abstract B18: Non-thermal plasma, tirapazamine, and gap junctions: A novel approach to melanoma therapy through ROS induction. Cancer Research. 2015;75(14 Suppl):B18-B18. https://doi.org/10.1158/1538- 7445.mel2014-b18

54. Privat-Maldonado A, Bengtson C, Razzokov J, Smits E, Bogaerts A. Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel). 2019;11(12):1920. https://doi. org/10.3390/cancers11121920

55. Lin A, Gorbanev Y, De Backer J, Van Loenhout J, Van Boxem W, Lemière F, Cos P, Dewilde S, Smits E, Bogaerts A. NonThermal Plasma as a Unique Delivery System of Short-Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells. Advanced Science. 2019;6(6):1802062. https://doi.org/10.1002/advs.201802062

56. Zhunussova A, Vitol EA, Polyak B, Tuleukhanov S, Brooks AD, Sensenig R, Friedman G, Orynbayeva Z. MitochondriaMediated Anticancer Effects of Non-Thermal Atmospheric Plasma. PLoS One. 2016;11(6):e0156818-e0156818. https:// doi.org/10.1371/journal.pone.0156818

57. Li W, Yu KN, Ma J, Shen J, Cheng C, Zhou F, Cai Z, Han W. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells. Arch Biochem Biophys. 2017;633:68-77. https://doi.org/10.1016/j. abb.2017.09.005

58. Abel B. Hydrated Interfacial Ions and Electrons. Annual Review of Physical Chemistry. 2013;64(1):533-552. https:// doi.org/10.1146/annurev-physchem-040412-110038

59. Zhen X, Sun H-N, Liu R, Choi HS, Lee D-S. Non-thermal Plasma-activated Medium Induces Apoptosis of Aspc1 Cells Through the ROS-dependent Autophagy Pathway. In vivo (Athens, Greece). 2020;34(1):143-153. https://doi. org/10.21873/invivo.11755

60. Xu S, Wang Y, Que Y, Ma C, Cai S, Wang H, Yang X, Yang C, Cheng C, Zhao G, Hu Y. Cold atmospheric plasma activated Ringer's solution inhibits the proliferation of osteosarcoma cells through the mitochondrial apoptosis pathway. Oncol Rep. 2020;43(5):1683-1691. https://doi.org/10.3892/or.2020.7518

61. Schneider C, Gebhardt L, Arndt S, Karrer S, Zimmermann JL, Fischer MJM, Bosserhoff A-K. Acidification is an Essential Process of Cold Atmospheric Plasma and Promotes the Anti-Cancer Effect on Malignant Melanoma Cells. Cancers. 2019;11(5):671. https://doi.org/10.3390/cancers11050671

62. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann K-D, von Woedtke T. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Processes and Polymers. 2010;7(3‐4):250- 257. https://doi.org/10.1002/ppap.200900077

63. Nagaya M, Hara H, Kamiya T, Adachi T. Inhibition of NAMPT markedly enhances plasma-activated medium-induced cell death in human breast cancer MDA-MB-231 cells. Archives of Biochemistry and Biophysics. 2019;676:108155. https://doi. org/https://doi.org/10.1016/j.abb.2019.108155

64. Kurake N, Ishikawa K, Tanaka H, Hashizume H, Nakamura K, Kajiyama H, Toyokuni S, Kikkawa F, Mizuno M, Hori M. Non-thermal plasma-activated medium modified metabolomic profiles in the glycolysis of U251SP glioblastoma. Archives of Biochemistry and Biophysics. 2019;662:83-92. https://doi.org/ https://doi.org/10.1016/j.abb.2018.12.001

65. Kaushik N, Lee SJ, Choi TG, Baik KY, Uhm HS, Kim CH, Kaushik NK, Choi EH. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells. Scientific Reports. 2015;5(1):8726. https://doi.org/10.1038/srep08726

66. Murakami T. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism. Scientific Reports. 2019;9(1):17138. https://doi.org/10.1038/s41598-019-53219-w

67. Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28-44. https://doi. org/10.1016/j.freeradbiomed.2014.11.014

68. Yang X, Chen G, Yu KN, Yang M, Peng S, Ma J, Qin F, Cao W, Cui S, Nie L, Han W. Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells. Cell Death Dis. 2020;11(4):295. https://doi.org/10.1038/s41419-020-2459-3

69. Brun P, Pathak S, Castagliuolo I, Palù G, Zuin M, Cavazzana R, Martines E. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9(8):e104397-e104397. https://doi.org/10.1371/journal. pone.0104397

70. Park J, Lee H, Lee HJ, Kim GC, Kim S-S, Han S, Song K. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radical Biology and Medicine. 2019;134:374-384. https://doi.org/https://doi.org/10.1016/j. freeradbiomed.2019.01.032

71. Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free radical biology & medicine. 2016;100:153-163. https://doi. org/10.1016/j.freeradbiomed.2016.06.023

72. Asare A, Levorse J, Fuchs E. Coupling organelle inheritance with mitosis to balance growth and differentiation. Science. 2017;355(6324):eaah4701. https://doi.org/10.1126/science. aah4701

73. Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012;1822(9):363-1373. https:// doi.org/https://doi.org/10.1016/j.bbadis.2011.12.001

74. Schrader M, Costello J, Godinho LF, Islinger M. Peroxisomemitochondria interplay and disease. J Inherit Metab Dis. 2015;38(4):681-702. https://doi.org/10.1007/s10545-015-9819-7

75. Fransen M, Lismont C, Walton P. The PeroxisomeMitochondria Connection: How and Why? International Journal of Molecular Sciences. 2017;18(6):1126. https://doi. org/10.3390/ijms18061126

76. Schumann U, Subramani S. Special delivery from mitochondria to peroxisomes. Trends in cell biology. 2008;18(6):253-256. https://doi.org/10.1016/j.tcb.2008.04.002

77. Zima AV, Mazurek SR. Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Reviews of physiology, biochemistry and pharmacology. 2016;171:39-62. https://doi.org/10.1007/112_2016_2


Рецензия

Для цитирования:


Оловянникова Р.Я., Макаренко Т.А., Лычковская Е.В., Гудкова Е.С., Мурадян Г.А., Медведева Н.Н., Чекишева Т.Н., Бердников С.И., Семичев Е.В., Малиновская Н.А., Салмина А.Б., Салмин В.В. Химические механизмы действия холодной плазмы на клетки. Фундаментальная и клиническая медицина. 2020;5(4):104-116. https://doi.org/10.23946/2500-0764-2020-5-4-104-115

For citation:


Olovyannikova R.Ya., Makarenko Т.A., Lychkovskaya E.V., Gudkova E.S., Muradyan G.A., Medvedeva N.N., Chekisheva Т.N., Berdnikov S.I., Semichev E.V., Malinovskaya N.A., Salmina A.B., Salmin V.V. Chemical mechanisms of non-thermal plasma action on cells. Fundamental and Clinical Medicine. 2020;5(4):104-116. (In Russ.) https://doi.org/10.23946/2500-0764-2020-5-4-104-115

Просмотров: 1429


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)