Preview

Fundamental and Clinical Medicine

Advanced search

Geographic information systems as a part of epidemiological surveillance for COVID-19 in urban areas

https://doi.org/10.23946/2500-0764-2021-6-2-16-23

Abstract

Aim. To identify clustering areas of COVID-19 cases during the first 3 months of pandemic in a million city.

Materials and Methods. We collected the data on polymerase chain reaction verified cases of novel coronavirus infection (COVID-19) in Omsk for the period from April, 15 until July 1, 2020. We have drawn heat maps using Epanechnikov kernel and calculated Getis-Ord general G statistic (Gi*). Analysis of geographic information was carried out in QGIS 3.14 Pi (qgis.org) software using the Visualist plugin.

Results. Having inspected spatial distribution of COVID-19 cases, we identified certain clustering areas. The spread of COVID-19 involved Sovietskiy, Central and Kirovskiy districts, and also Leninskiy and Oktyabrskiy districts a short time later. We found uneven spatiotemporal distribution of COVID-19 cases infection across Omsk, as 13 separate clusters were documented in all administrative districts of the city.

Conclusions. Rapid assessment of spatial distribution of the infection employing geographic information systems enables design of kernel density maps and harbors a considerable potential for real-time planning of preventive measures. 

About the Authors

A. I. Blokh
Omsk Research Institute of Natural Focal Infections; Omsk State Medical University
Russian Federation


N. A. Penyevskaya
Omsk Research Institute of Natural Focal Infections; Omsk State Medical University
Russian Federation


N. V. Rudakov
Omsk Research Institute of Natural Focal Infections; Omsk State Medical University
Russian Federation


O. A. Mikhaylova
Center for Hygiene and Epidemiology in the Omsk Region
Russian Federation


A. S. Fedorov
Center for Hygiene and Epidemiology in the Omsk Region
Russian Federation


A. V. Sannikov
Omsk State Medical University
Russian Federation


S. V. Nikitin
Center for Hygiene and Epidemiology in the Omsk Region
Russian Federation


References

1. Kutyrev VV, Popova AYu, Smolensky VYu, Ezhlova EB, Demina YuV, Safronov VA, Karnaukhov IG, Ivanova AV, Shcherbakova SA. Epidemiological Features of New Coronavirus Infection (COVID-19). Communication 1: Modes of Implementation of Preventive and Anti-Epidemic Measures. Problems of Particularly Dangerous Infections. 2020;(1):6-13. (In Russ.).https://doi.org/10.21055/0370-1069-2020-1- 6-13

2. World Health Organization (WHO). Coronavirus disease (COVID-19) Situation Report – 163. Available at: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200701-covid-19-sitrep-163.pdf?sfvrsn=c202f05b_2. Accessed: 27 April, 2021.

3. Li X, Zhou L, Jia T, Peng R, Fu X, Zou Y. Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan. Int. J. Environ. Res. Public Health. 2020; 7(18):6712. https://doi.org/10.3390/ijerph17186712

4. Omsk – gorod budushhego! (In Russ.). Available at: https://admomsk.ru/web/guest/city. Accessed January 1, 2021.

5. Rossy Q. Visualist: a spatial analysis plugin for crime analysts. Ecole des sciences criminelles, Lausanne. – 2019. – Available at: https://plugins.qgis.org/plugins/visualist/ Accessed: 27 April, 2021.

6. Silverman BW. Density Estimation for Statistics and Data Analysis. London : Chapman & Hall/CRC; 1986.

7. Blokh AI, Penievskaya NA, Rudakov NV, Lazarev II. Epidemic potential of COVID-19 in Omsk region and assessment of the anti-epidemic measures. Fundamental and Clinical Medicine. 2020;5(3):8-17. (In Russ.). https://doi.org/10.23946/2500-0764-2020-5-3-8-17

8. Wang JF, Meng B, Zheng XY, Liu J, Han W, Wu J, Liu X, Li X, Song X. Analysis on the multi-distribution and the major influencing factors on severe acute respiratory syndrome in Beijing. Chinese J Epidemiol. 2005;26(3):164-168.

9. Pobedinskiy GG, Sarskov SA, V'yushkov MV. Prototip razdela epidemiologicheskogo atlasa «Monitoring zabolevaemosti COVID-19». V sb : Fundamental'nye i prikladnye aspekty analiza riska zdorov'yu naseleniya. Materialy vserossiyskoy nauchno-prakticheskoy internet-konferentsii molodykh uchenykh i spetsialistov Rospotrebnadzora s mezhdunarodnym uchastiem. Perm ; 2020:394-402. (In Rus.). Available at: https://www.elibrary.ru/download/elibrary_44160533_12048623.pdf. Accessed: 27 April, 2021.

10. Brody H, Rip MR, Vinten-Johansen P, Paneth N, Rachman S. Mapmaking and myth-making in Broad Street: the London cholera epidemic, 1854. Lancet. 2000;356(9223):64-68. https://doi.org/10.1016/S0140-6736(00)02442-9

11. Murad A, Khashoggi BF. Using GIS for Disease Mapping and Clustering in Jeddah, Saudi Arabia. ISPRS International Journal of Geo-Information. 2020;9(5):328. https://doi.org/10.3390/ijgi9050328


Review

For citations:


Blokh A.I., Penyevskaya N.A., Rudakov N.V., Mikhaylova O.A., Fedorov A.S., Sannikov A.V., Nikitin S.V. Geographic information systems as a part of epidemiological surveillance for COVID-19 in urban areas. Fundamental and Clinical Medicine. 2021;6(2):16-23. (In Russ.) https://doi.org/10.23946/2500-0764-2021-6-2-16-23

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)