Preview

Fundamental and Clinical Medicine

Advanced search

cAMP Content in Mitochondria of Cardiomyocytes in C57bl/6 Mice With B16/F10 Melanoma in the Background of Chronic Neuropathic Pain

https://doi.org/10.23946/2500-0764-2024-9-2-28-36

Abstract

Aim. To study the effect of malignant tumor growth on level of cAMP in mitochondria of cardiomyocytes in mice with chronic neuropathic pain.

Materials and Methods. С57ВL/6 mice (n = 336) have been grouped as follows: intact mice (♂n = 21; ♀n = 21), mice with chronic neuropathic pain (♂n = 21; ♀n = 21), mice with melanoma В16/F10 (♂n=63; ♀n=63), and mice with melanoma В16/ F10 and chronic neuropathic pain (♂n=63; ♀n=63). After 1, 2, and 3 weeks of the melanoma growth, cardiac mitochondria of abovementioned mice have been isolated by the centrifugation with the following measurement of cAMP.

Results. Chronic neuropathic pain has induced a 3.6-fold reduction in cAMP in cardiac mitochondria of female mice. In mice with melanoma В16/ F10, cardiac cAMP showed 4-fold average increase from the 2nd week of the tumor growth, while in mice with melanoma В16/F10 and chronic neuropathic pain a 2-4-fold increase in cAMP was recorded as soon as from the 1st week of tumor growth, eventually leading to the depletion of cAMP by the 3rd week of the experiment. Serum cAMP concentration did not correlate with the cAMP level in cardiac mitochondria and was reduced in both males and females.

Conclusion. Alterations in cAMP concentration in cardiac mitochondria were gender-specific, as female mice responded to a chronic neuropathic pain without other triggers. In mice with melanoma and chronic neuropathic pain, cAMP level raised significantly earlier than in mice without chronic neuropathic pain, resulting in full cAMP depletion by the 3rd week of the experiment.

About the Authors

E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

Prof. Elena M. Frantsiyants, DSc, Professor, Chief Scientific Officer 

63, 14 Liniya Street, Rostov-on-Don, 344037



V. A. Bandovkina
National Medical Research Centre for Oncology
Russian Federation

Dr. Valeria A. Bandovkina, DSc, Leading Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



I. V. Neskubina
National Medical Research Centre for Oncology
Russian Federation

Dr. Irina V. Neskubina, PhD, Senior Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



A. I. Shikhlyarova
National Medical Research Centre for Oncology
Russian Federation

Prof. Alla I. Shikhlyarova, DSc, Professor, Senior Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



I. V. Kaplieva
National Medical Research Centre for Oncology
Russian Federation

Dr. Irina V. Kaplieva, MD, DSc, Head of the Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



E. I. Surikova
National Medical Research Centre for Oncology
Russian Federation

Dr. Ekaterina I. Surikova, PhD, Senior Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



Yu. A. Pogorelova
National Medical Research Centre for Oncology
Russian Federation

Dr. Yulia A. Pogorelova, PhD, Senior Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



N. D. Cheryarina
National Medical Research Centre for Oncology
Russian Federation

Dr. Natalia D. Cheryarina, MD, Technician, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



L. K. Trepitaki
National Medical Research Centre for Oncology
Russian Federation

Dr. Lidia K. Trepitaki, PhD, Researcher, Laboratory of Cancer Pathogenesis

63, 14 Liniya Street, Rostov-on-Don, 344037



S. S. Todorov
Rostov State Medical University
Russian Federation

Dr. Sergey S. Todorov, MD, DSc, Head of the Department of Pathological Anatomy, Head of the Morphology Division

29, Nahichevanskiy Pereulok, Rostov-on-Don, 344022 



N. D. Ushakova
National Medical Research Centre for Oncology
Russian Federation

Prof. Natalia D. Ushakova, MD, DSc, Professor, Anesthesiologist and Critical Care Specialist, Department of Critical Care Medicine

63, 14 Liniya Street, Rostov-on-Don, 344037



O. G. Ishonina
National Medical Research Centre for Oncology
Russian Federation

Dr. Oksana G. Ishonina, PhD, Head of the Department of Training and Retraining

63, 14 Liniya Street, Rostov-on-Don, 344037



References

1. Lin TY, Mai QN, Zhang H, et al. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools. Nat Chem Biol. 2024;20(1):62-73. DOI: 10.1038/s41589-023-01381-8

2. Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E.The Role of Epac in Cancer Progression. Int J Mol Sci. 2020;21(18):6489. https://doi.org/10.3390/ijms21186489

3. Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev. 2018;98(2):919-1053. https://doi.org/10.1152/physrev.00025.2017

4. Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells. 2021;10(5):1223. https://doi.org/10.3390/cells10051223

5. Rech L, Abdellatif M, Pöttler M, Stangl V, Mabotuwana N, Hardy S, Rainer PP. Small molecule STING inhibition improves myocardial infarction remodeling. Life Sci. 2022;291:120263. https://doi.org/10.1016/j.lfs.2021.120263

6. Laudette M, Sainte-Marie Y, Cousin G, Bergonnier D, Belhabib I, Brun S, Formoso K, Laib L, Tortosa F, Bergoglio C, Marcheix B, Borén J, Lairez O, Fauconnier J, Lucas A, Mialet-Perez J, Moro C, Lezoualc’h F. Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity. Cell death dis. 2021;12(9):824. https://doi.org/10.1038/s41419-021-04113-9

7. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121-127. https://doi.org/10.1080/07853890.2017.1417631

8. Ould Amer Y, Hebert-Chatelain E. Mitochondrial cAMP-PKAsignaling: what do we really know? Biochim Biophys Acta Bioenerg. 2018;(1859):868-877. https://doi.org/10.1016/j.bbabio.2018.04.005

9. Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells. 2021;10(4):922. https://doi.org/10.3390/cells10040922

10. Bers DM. Going to cAMP just got more complicated. J Physiol. 2007;583:415. https://doi.org/10.1113/jphysiol.2007.140764

11. Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Biomed Pharmacother. 2022;148:112726. https://doi.org/10.1016/j.biopha.2022.112726

12. Frantsiyants EM, Neskubina IV, Shikhlyarova AI, Yengibaryan MA, Vashchenko LN, Surikova EI, Nemashkalova LA, Kaplieva IV, Trepitaki LK, Bandovkina VA, Pogorelova YA. Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16/F10 linked with comorbid pathology. Cardiometry. 2021;18:121-130. https://doi.org/10.18137/cardiometry.2021.18.121130

13. Frantsiyants EM, Neskubina IV, Cheryarina ND, Surikova EI, Shikhlyarova AI, Bandovkina VA, Nemashkalova LA, Kaplieva IV, Trepitaki LK, Kachesova PS, Kotieva IM, Morozova MI, Pogorelova YuA. Functional state of cardiomyocyte mitochondria in malignant process in presence of comorbid pathology in experiment. South Russian Journal of Cancer. 2021;2(3):13-22. (In Russ.). https://doi.org/10.37748/2686-9039-2021-2-3-2

14. Kit OI, Kotieva IM, Frantsiyants EM, Kaplieva IV, Trepitaki LK, Bandovkina VA, Neskubina IV, Surikova EI, Cheryarina ND, Pogorelova JuA, Nemashkalova LA. Influence of chronic neuropathic pain on the course of malignant В16/F10 melanoma in male mice. Bulletin of higher educational institutions. north caucasus region. Natural sciences. 2019;1(201):106-111. (In Russ.). https://doi.org/10.23683/0321-3005-2019-1-106-111

15. Egorova MV, Afanasyev SA. Isolation of mitochondria from cells and tissues of animals and human: modern methodical approaches. The siberian medical journal. 2011;26(1-1):22-28. (In Russ.). EDN: https://elibrary.ru/NHHOZX

16. Ma Y, Chen J, Yu D, Wei B, Jin H, Zeng J, Liu X. cAMP-PKA signaling is involved in regulation of spinal HCN channels function in diabetic neuropathic pain. Neurosci Lett. 2021;750:135763. https://doi.org/10.1016/j.neulet.2021.135763

17. Signorile A, Santeramo A, Tamma G, Pellegrino T, D’Oria S, Lattanzio P, De Rasmo D. Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells. Biochim Biophys Acta Mol Cell Res. 2017;1864(2):355-66. https://doi.org/10.1016/j.bbamcr.2016.11.022

18. Trexler CL, Odell AT, Jeong MY, Dowell RD, Leinwand LA. Transcriptome and functional profile of cardiac myocytes is influenced by biological sex. Circ Cardiovasc Genet. 2017;10:e001770. https://doi.org/10.1161/circgenetics.117.001770

19. Machuki JO, Zhang HY, Geng J, Fu L, Adzika GK, Wu L, Shang W, Wu J, Kexue L, Zhao Z, Sun H. Estrogen regulation of cardiac cAMP-L-type Ca (2+) channel pathway modulates sex differences in basal contraction and responses to beta2AR-mediated stress in left ventricular apical myocytes. Cell Commun Signal. 2019;17:34. https://doi.org/10.1186/s12964-019-0346-2

20. El-Battrawy I, Zhao Z, Lan H, Schünemann JD, Sattler K, Buljubasic F, Patocskai B, Li X, Yücel G, Lang S, Nowak D, Cyganek L, Bieback K, Utikal J, Zimmermann WH, Ravens U, Wieland T, Borggrefe M, Zhou XB, Akin I. Estradiol protection against toxic effects of catecholamine on electrical properties in human-induced pluripotent stem cell derived cardiomyocytes. Int J Cardiol. 2018;254:195-202. https://doi.org/10.1016/j.ijcard.2017.11.007

21. Parks RJ, Bogachev O, Mackasey M, Ray G, Rose RA, Howlett SE. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. J Mol Cell Cardiol. 2017;111:51-60. https://doi.org/10.1016/j.yjmcc.2017.07.118

22. Caldwell JL, Lee IJ, Ngo L, Wang L, Bahriz S, Xu B, Bers DM, Navedo MF, Bossuyt J, Xiang YK, Ripplinger CM. Whole-heart multiparametric optical imaging reveals sex-dependent heterogeneity in cAMP signaling and repolarization kinetics. Sci Adv. 2023;9(3):eadd5799. https://doi.org/10.1126/sciadv.add5799

23. Patra C, Foster K, Corley JE, Dimri M, Brady MF. Biochemistry, cAMP. 2023 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 30571052

24. Liu Y, Chen J, Fontes SK, Bautista EN, Cheng Z. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc res. 2022;118(2):386-98. https://doi.org/10.1093/cvr/cvab008

25. Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018;30:29-37. https://doi.org/10.1016/j.ebiom.2018.03.016.


Review

For citations:


Frantsiyants E.M., Bandovkina V.A., Neskubina I.V., Shikhlyarova A.I., Kaplieva I.V., Surikova E.I., Pogorelova Yu.A., Cheryarina N.D., Trepitaki L.K., Todorov S.S., Ushakova N.D., Ishonina O.G. cAMP Content in Mitochondria of Cardiomyocytes in C57bl/6 Mice With B16/F10 Melanoma in the Background of Chronic Neuropathic Pain. Fundamental and Clinical Medicine. 2024;9(2):28-36. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-2-28-36

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)