Preview

Fundamental and Clinical Medicine

Advanced search

Immunohistochemistry for Assessing Toxicity and Mechanism of Action of Anticancer Drugs During Preclinical Trials. Part II. Cell Death, Vasculogenesis and Angiogenesis

https://doi.org/10.23946/2500-0764-2024-9-2-72-85

Abstract

About 120 chemical compounds are registered in Russia as anticancer drugs, and screening and investigation of novel therapies remain an urgent task for specialists in pathophysiology, pharmacology and oncology. Among them, treatments targeting neovascularisation and regulated cell death of atypical cells within the malignant tumours are of utmost importance. Hence, development of novel anti-cancer drugs must include testing of their pro-apoptotic and anti-angiogenic activity. Here we review the markers of angiogenesis and regulated cell death during the tumor development and the respective immunohistochemical applications for preclinical trials. Here we discuss relevant molecular markers for studying primary cell death subroutines which can be targeted by anticancer agents. The most sensitive and specific immunohistochemical markers of programmed cell death are tumor necrosis factor alpha (TNF-α) for necrosis and anti-cellular apoptosis susceptibility/CSE1L, Bcl-2, and apoptotic protease activating factor-1 (APAF1) for apoptosis. Primary markers of angiogenesis include vascular endothelial growth factor A (VEGF-A), hypoxia-inducible factor 1-alpha (HIF-1α), and platelet-derived growth factor (PDGF). Analysis of tumour blood supply, metastasis and apoptosis has both theoretical and practical significance with direct implications for the pharmaceutical industry.

About the Authors

M. A. Akimenko
Rostov State Medical University ; Clinical Hospital “Russian Railways Medicine”
Russian Federation

Dr. Marina A. Akimenko, MD, PhD, Assistant Professor, Department of Medical Biology and Genetics, Biologist, Department of Pathology

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022

92a, Varfolomeeva Street, Rostov-on-Don, 344011
 



O. V. Voronova
Rostov State Medical University ; Clinical Hospital “Russian Railways Medicine” ; Pathologic and Anatomical Bureau
Russian Federation

Dr. Olga V. Voronova, MD, PhD, Assistant Professor, Department of Forensic Medicine, Head of the Department of Pathology, the Сhief physician 

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 

92a, Varfolomeeva Street, Rostov-on-Don, 344011 

170A Blagodatnaya str., Rostov-on-Don, 344015 



M. S. Alkhusein-Kulyaginova
Rostov State Medical University
Russian Federation

Dr. Margarita S. Alkhusein-Kulyaginova, MD, Assistant Professor, Department of Pathophysiology

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 



N. A. Kornienko
Rostov State Medical University
Russian Federation

Dr. Natalia A. Kornienko, MD, PhD, Associate Professor, Department of Normal Anatomy 

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 



M. V. Gulyan
Rostov State Medical University
Russian Federation

Dr. Marina V. Gulyan, MD, PhD, Associate Professor, Department of Pathophysiology 

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 



M. A. Dodokhova
Rostov State Medical University
Russian Federation

Prof. Margarita A. Dodokhova, MD, DSc, Professor, Department of Pathophysiology, Head of the Central Research Laboratory

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 



I. M. Kotieva
Rostov State Medical University
Russian Federation

Prof. Inga M. Kotieva, MD, DSc, Head of the Department of Pathophysiology, Chief Scientific Officer

29, Nakhichevansky Prospekt, Rostov-on-Don, 344022 



References

1. Kaprina AD, Starinskogo VV, Shakhzadovoy AO, eds. Sostoyanie onkologicheskoy pomoshchi naseleniyu Rossii v 2019 godu. Moscow : MNIOI im PA Gertsena - filial FGBU «NMITs radiologii» Minzdrava Rossii; 2020. (In Russ.).

2. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Targeted Ther. 2020;5(1):28. https://doi.org/10.1038/s41392-020-0134-x

3. Qi S, Deng S, Lian Z, Yu K. Novel Drugs with high efficacy against tumor angiogenesis. Int J Mol Sci. 2022;23(13):6934. https://doi.org/10.3390/ijms23136934

4. Franzyants EM, Kotieva IM, Sheiko EA. Pain as an independent form of the disease. Russian Journal of Pain. 2019;17(3):46-51. (In Russ). https://doi.org/10.25731/RASP.2019.03.32

5. Kit OI, Franziantz M, Kaplieva IV, Trepitaki LK, Kotieva IM. Method of the melanoma B 16 malignant growth in mice modification with chronic pain. Patent of invention RUS №2650587 26.04.2017. Byul. №11. Available at: file:///C:/Users/toropova.ov/Downloads/2650587.pdf. Accessed: 13.04.2024. (In Russ).

6. Kit OI, Kotieva IM, Frantsiyants EM, Kaplieva IV, Tripitaki LK, Bandovkina VA, Rozenko LYa, Cheryarina ND, Pogorelova YA. Angiogenesis growth factors in the intact and pathologically changed skin of female mice with malignant melanoma, which develops on the background of chronic pain. Russian Journal of Pain. 2017;3-4(54):17- 25. (In Russ).

7. Ministry of Healthcare of the Russian Federation. State Register of Medicines [Electronic resource]. Moscow, 2021. (In Russ). Available at: http://grls.rosminzdrav.ru. Accessed: 09.04.2024.

8. Milayeva ER, Dodokhova MA, Shpakovsky DB, Antonenko TA, Safronenko AV, Kotieva IM, Komarova EF, Ganzhorn EV, AlkhuseinKulyaginova .S. Mechanisms of cytotoxic action of organotin compounds. Biomedicine. 2021;17(2):88-99. (In Russ). https://doi.org/10.33647/2074-5982-17-2-88-99

9. Bezborodova OA, Pankratov AA, Nemtsova ER, Venediktova YuB, Vorontsova MS, Engalycheva GN, Syubaev RD. Anti-tumor drugs: Planning preclinical efficacy and safety studies. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2020;10(2):96-110. (In Russ). https://doi.org/10.30895/1991-2919-2020-10-2-96-110

10. Vasiliev AN, Niyazov RR, Gavrishina EV, Dranitsyna MA, Kulichev DA. Problems of planning and conducting preclinical research in the Russian Federation. Remedium. 2017;9:6-19. (In Russ). http://dx.doi.org/10.21518/1561-5936-2017-9-6-18

11. Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;30;39(1):204. https://doi.org/10.1186/s13046-020-01709-5

12. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106-1121. https://doi.org/10.1038/s41423-020-00630-3

13. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, IchijoH, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. https://doi.org/10.1038/s41418-017-0012-4

14. Karsch-Bluman A, Benny O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. Adv Exp Med Biol. 2020;1225:89-98. https://doi.org/10.1007/978-3-030-35727-6_6

15. Karsch-Bluman A, Feiglin A, Arbib E, Stern T, Shoval H, Schwob O, Berger M, Benny O. Tissue necrosis and its role in cancer progression. Oncogene. 2019;38(11):1920-1935. https://doi.org/10.1038/s41388-018-0555-y

16. Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther. 2020;214. https://doi.org/10.1016/j.pharmthera.2020.107593

17. Zhao Q, Yang LJ, Zheng YB, Gong JH. [Programmed Necrosis Inducers for Cancer Treatment]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2022;44(2):338-347. https://doi.org/10.3881/j.issn.1000-503X.13241

18. Knight T, Luedtke D, Edwards H, Taub JW, Ge Y. A delicate balance - The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol. 2019;162:250-261. https://doi.org/10.1016/j.bcp.2019.01.015

19. Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992. https://doi.org/10.1042/BSR20180992

20. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395-417. https://doi.org/10.1038/s41571-020-0341-y

21. Dodokhova MA, Safronenko AV, Kotieva IM, Milaeva ER, Shpakovsky DB, Trepel VG, Alkhuseyn-Kulyaginova MS, Kotieva VM. Mitochondrial dysfunction as a mechanism of antitumor and antimetastatic action of hybrid organotin compounds Problems of biological, medical and pharmaceutical chemistry. 2021;24(11):28-33. (In Russ). https://doi.org/10.29296/25877313-2021-11-05

22. Dodokhova MA, Kotieva IM, Safronenko АV, Trepel VG, Alkhuseyn– Kulyaginova MS, Shpakovskiy DB, Milaeva ER. Hybrid organotin compounds — modulators of apoptotic processes in the liver when administered once and repeatedly to Wistar rats. Ural Medical Journal. 2021;20(4):18-23. (In Russ). https://doi.org/10.52420/2071-5943-2021-20-4-18-23

23. Frantsiyants EM, Neskubina IV, Sheiko EA. Research and Practical Medicine Journal. 2020;7(2):92-108. (In Russ). https://doi.org/10.17709/2409-2231-2020-7-2-9

24. Frantsiyants EM, Neskubina IV, Shikhlyarova AI, Cheryarina ND, Surikova EI, Bandovkina VA, Nemashkalova LA, Kaplieva IV, Trepitaki LK, Kachesova PS. Mitokhondrial’naya terapiya sposobna tormozit’ razvitie melanomy. Problems in oncology. 2022;68(3):348-349. (In Russ). https://doi.org/10.1200/jco.2022.40.16_suppl.e21571

25. Jang D, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR, Yang SH. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int J Mol Sci. 2021;22(5):2719. https://doi.org/10.3390/ijms22052719

26. Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets. 2021;21(1):77-90. https://doi.org/10.2174/1871530320666200909092908

27. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19(4):237-253. https://doi.org/10.1038/s41571-021-00588-9

28. Galdiero MR, Marone G, Mantovani A. Cancer Inflammation and Cytokines. Cold Spring Harb Perspect Biol. 2018;10(8):a028662. https://doi.org/10.1101/cshperspect.a028662

29. Powell IJ, Chinni SR, Reddy SS, Zaslavsky A, Gavande N. Proinflammatory cytokines and chemokines initiate multiple prostate cancer biologic pathways of cellular proliferation, heterogeneity and metastasis in a racially diverse population and underlie the genetic/biologic mechanism of racial disparity: Update. Urol Oncol. 2021;39(1):34-40. https://doi.org/10.1016/j.urolonc.2020.08.019

30. Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The TNF Paradox in Cancer Progression and Immunotherapy. Front Immunol. 2019;10:1818. https://doi.org/10.3389/fimmu.2019.01818

31. Jiang M, Liu J, Yang D, Tross D, Li P, Chen F, Alam M, Faustman DL, Oppenheim JJ, Chen X. A TNFR2 antibody by countering immunosuppression cooperates with HMGN1 and R848 immune stimulants to inhibit murine colon cancer. Int Immunopharmacol. 2021;101(Pt A) :108345. https://doi.org/10.1016/j.intimp.2021.108345

32. Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol. 2020;10:584. https://doi.org/10.3389/fonc.2020.00584

33. Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr). 2020;43(1):1-18. https://doi.org/10.1007/s13402-019-00489-1

34. Gong K, Guo G, Beckley N, Zhang Y, Yang X, Sharma M, Habib AA. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia. 2021;23(2):189-196. https://doi.org/10.1016/j.neo.2020.12.006

35. Baram T, Rubinstein-Achiasaf L, Ben-Yaakov H, Ben-Baruch A. Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Front Oncol. 2021;10:614468. https://doi.org/10.3389/fonc.2020.614468

36. Ben-Baruch A. Partners in crime: TNFα-based networks promoting cancer progression. Cancer Immunol Immunother. 2020;69(2):263-273. https://doi.org/10.1007/s00262-019-02435-4

37. Liang C, Wang X, Zhang Z. ACOT11 promotes cell proliferation, migration and invasion in lung adenocarcinoma. Transl. Lung Cancer Res. 2020;9(5):1885-1903. https://doi.org/10.21037/tlcr-19-509

38. Jiang M-C. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumor Biol. 2016;37(10):13077-13090. https://doi.org/10.1007/s13277-016-5301-x

39. Chang CC, Kao WY, Liu CY, Su HH, Kan YA, Lin PY, Ku WC, Chang KW, Yang RN, Huang CJ. Butyrate supplementation regulates expression of chromosome segregation 1like protein to reverse the genetic distortion caused by p53 mutations in colorectal cancer. Int J Oncol. 2022;60(6):64. https://doi.org/10.3892/ijo.2022.5354

40. Li Y, Yuan S, Liu J, Wang Y, Zhang Y, Chen X. CSE1L silence inhibits the growth and metastasis in gastric cancer by repressing GPNMB via positively regulating transcription factor MITF. J Cell Physiol. 2020;235:2071-2079. https://doi.org/10.1002/jcp.29107

41. Luo Y, Qu X, Kan D. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered. 2021;12(1):6967- 6980. https://doi.org/10.1080/21655979.2021.1975018

42. Ye M, Chen Y, Liu J. Interfering withCSE1L /CAS inhibits tumour growth viaC3 in triple-negative breast cancer. Cell Prolif. 2022;55(5):e13226. https://doi.org/10.1111/cpr.13226

43. Nagashima S, Maruyama J, Honda K. CSE1L promotes nuclear accumulation of transcriptional coactivator TAZ and enhances invasiveness of human cancer cells. J Biol Chem. 2021;297(1):100803. https://doi.org/10.1016/j.jbc.2021.100803

44. Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/ mTOR signaling pathway in chronic myeloid leukemia. Hematology. 2023;28(1):1-9. https://doi.org/10.1080/16078454.2022.2161201

45. Zhou S, Zhang M, Zhou C, Meng Y, Yang H, Ye W. FLVCR1 Predicts Poor Prognosis and Promotes Malignant Phenotype in Esophageal Squamous Cell Carcinoma via Upregulating CSE1L. Front Oncol. 2021;11:660955. https://doi.org/10.3389/fonc.2021.660955

46. Campbel KJ, Tait SW. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018;8(5):180002. https://doi.org/10.1098/rsob.180002

47. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175-193. https://doi.org/10.1038/s41580-018-0089-8

48. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416-431. https://doi.org/10.1111/febs.14186

49. Suvarna V, Singh V, Murahari M. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur J Pharmacol. 2019;862:172655. https://doi.org/10.1016/j.ejphar.2019.172655

50. Chi XX, Zhang T, Chu XL. The regulatory effect of genistein on granulosa cell in ovary of rat with PCOS through Bcl-2 and Bax signaling pathways. J Vet Med Sci. 2018;80(8):1348-1355. https://doi.org/10.1292/jvms.17-0001

51. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25(1):27-36. https://doi.org/10.1038/cdd.2017.161

52. Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci. 2022;23(7):3691. https://doi.org/10.3390/ijms23073691

53. Krishna S, Kumar SB, Krishna M, Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Comput Biol Med. 2021;134:104455. https://doi.org/10.1016/j.compbiomed.2021.104455

54. Liu Q, Oesterlund EJ, Chi X, Pogmore J, Leber B, Andrews DW. Bim escapes displacement by BH3- mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. Elife. 2019;12(8):e37689. https://doi.org/10.7554/eLife.37689

55. Mohamed DAW, Selim HM, Elmazny A, Genena A, Nabil MM. Apoptotic protease activating factor-1 gene and MicroRNA-484: A possible interplay in relapsing remitting multiple sclerosis. Mult Scler Relat Disord. 2022;58:103502. https://doi.org/10.1016/j.msard.2022.103502

56. Noori AR, Tashakor A, Nikkhah M, Eriksson LA, Hosseinkhani S, Fearnhead HO. Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9. Biochimie. 2021;180:23-29. https://doi.org/10.1016/j.biochi.2020.10.013

57. Wang N, Li R, Jia H, Xie H, Liu C, Jiang S, Zhang K, Lin P, Yu X. Apaf- 1 interacting protein, a new target of microRNA-146a-3p, promotes prostate cancer cell development via the ERK1/2 pathway. Cell Biol Int. 2022;46(7):1156-1168. https://doi.org/10.1002/cbin.11796

58. Shakeri R, Kheirollahi A, Davoodi J. Contribution of Apaf-1 to the pathogenesis of cancer and neurodegenerative diseases. Biochimie. 2021;190:91-110. https://doi.org/10.1016/j.biochi.2021.07.004

59. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385-403. https://doi.org/10.1038/nrd.2015.17

60. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell. 2014;157(7):1605- 18. https://doi.org/10.1016/j.cell.2014.04.033

61. Ferrara N. VEGF and Intraocular Neovascularization: From Discovery to Therapy. Transl Vis Sci Technol. 2016;5(2):10. https://doi.org/10.1167/tvst.5.2.10

62. Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem. 2014;156(1):1-10. https://doi.org/10.1093/jb/mvu031

63. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4-10. https://doi.org/10.1159/000088478

64. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2):455-467.

65. Pradeep CR, Sunila ES, Kuttan G. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr Cancer Ther. 2005;4(4):315-321. https://doi.org/10.1177/1534735405282557

66. Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, Groppa E, Burger MG, Hlushchuk R, Heberer M, Schaefer DJ, Gürke L, Djonov V, Vollmar B, Banfi A. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial prolifдeration. Angiogenesis. 2018;21(4):883-900. https://doi.org/10.1007/s10456-018-9634-5

67. Daneluzzi C, Seyed Jafari SM, Hunger R, Bossart S. The Immunohistochemical Assessment of Neoangiogenesis Factors in Squamous Cell Carcinomas and Their Precursors in the Skin. J Clin Med. 2022;11(15):4494. https://doi.org/10.3390/jcm11154494

68. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.J Clin Oncol.2005;23(5):1011- 1027. https://doi.org/10.1200/JCO.2005.06.081

69. Pezzuto A, Carico E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Curr Mol Med. 2018;18(6):343-351. https://doi.org/10.2174/1566524018666181109121849

70. Huang Y, Lin D, Taniguchi CM. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci China Life Sci. 2017;60(10):1114-1124. https://doi.org/10.1007/s11427-017-9178-y

71. Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 2003;3(10):721-732. https://doi.org/10.1038/nrc1187

72. Quintero M, Mackenzie N, Brennan PA. Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur J Surg Oncol. 2004;30(5):465-468. https://doi.org/10.1016/j.ejso.2004.03.008

73. Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. https://doi.org/10.1016/j.gene.2021.145796

74. Zhou J, Schmid T, Schnitzer S, Brüne B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237(1):10-21. https://doi.org/10.1016/j.canlet.2005.05.028

75. Bacon AL, Harris AL. Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med. 2004;36(7):530-539. https://doi.org/10.1080/07853890410018231

76. Appiah-Kubi K, Wang Y, Qian H, Wu M, Yao X, Wu Y, Chen Y. Plateletderived growth factor receptor/platelet-derived growth factor (PDGFR/ PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers.Tumour Biol.2016;37(8):10053- 10066. https://doi.org/10.1007/s13277-016-5069-z

77. Westermark B. Platelet-derived growth factor. Tillväxtfaktor med stor patofysiologisk betydelse [Platelet-derived growth factor. A growth factor of great physiopathological importance]. Lakartidningen. 1995;92(23):2397-2401.

78. Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, Blaskovich MA, Baldini L, Coppola D, Hamilton AD, Sebti SM. Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene. 2005;24(29):4701-4709. https://doi.org/10.1038/sj.onc.1208391

79. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283-1316. https://doi.org/10.1152/physrev.1999.79.4.1283

80. Heldin CH. Autocrine PDGF stimulation in malignancies. Ups J Med Sci. 2012;117(2):83-91. https://doi.org/10.3109/03009734.2012.658119

81. Alvarez RH, Kantarjian HM, Cortes JE. Biology of platelet-derived growth factor and its involvement in disease. Mayo Clin. Proc. 2006;81(9):1241- 1257. https://doi.org/10.4065/81.9.1241

82. Chen J, Yuan W, Wu L, Tang Q, Xia Q, Ji J, Liu Z, Ma Z, Zhou Z, Cheng Y, Shu X. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway. Oncotarget. 2017;8(6):9961-9973. https://doi.org/10.18632/oncotarget.14283

83. Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 2004;15(4):275-286. https://doi.org/10.1016/j.cytogfr.2004.03.002

84. Pietras K, Rubin K, Sjöblom T, Buchdunger E, Sjöquist M, Heldin CH, Ostman A. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62(19):5476-5484.

85. Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, Guo C, Zhou M, Li X, Li G, Xiong W, Zhang S, Zeng Z. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cell Mol Life Sci. 2021;78(1):173-193. https://doi.org/10.1007/s00018-020-03581-0

86. Zhang J, Qiao L, Liang N, Xie J, Luo H, Deng G, Zhang J. Vasculogenic mimicry and tumor metastasis. J BUON. 2016;21(3):533-541.

87. Liu J, Huang J, Yao WY, Ben QW, Chen DF, He XY, Li L, Yuan YZ. The origins of vacularization in tumors. Front Biosci (Landmark Ed). 2012;17(7):2559-2565. https://doi.org/10.2741/4071

88. Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VEcadherin. Mol Cancer. 2017;16(1):65. https://doi.org/10.1186/s12943-017-0631-x

89. Sun B, Zhang S, Zhao X, Zhang W, Hao X. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol. 2004;25(6):1609-1614.

90. Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 2021;20(1):7. https://doi.org/10.1186/s12943-020-01288-1

91. Qiao K, Liu Y, Xu Z, Zhang H, Zhang H, Zhang C, Chang Z, Lu X, Li Z, Luo C, Liu Y, Yang C, Sun T. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis. 2021;24(1):83-96. https://doi.org/10.1007/s10456-020-09744-8

92. Peng Z, Wang J, Shan B, Li B, Peng W, Dong Y, Shi W, Zhao W, He D, Duan M, Cheng Y, Zhang C, Duan C. The long noncoding RNA LINC00312 induces lung adenocarcinoma migration and vasculogenic mimicry through directly binding YBX1. Mol Cancer. 2018;17(1):167. https://doi.org/10.1186/s12943-018-0920-z

93. Strasser A, Vaux DaL. Cell Death in the Origin and Treatment of Cancer. Mol Cell. 2020;78(6):1045-1054. https://doi.org/10.1016/j.molcel.2020.05.014.


Review

For citations:


Akimenko M.A., Voronova O.V., Alkhusein-Kulyaginova M.S., Kornienko N.A., Gulyan M.V., Dodokhova M.A., Kotieva I.M. Immunohistochemistry for Assessing Toxicity and Mechanism of Action of Anticancer Drugs During Preclinical Trials. Part II. Cell Death, Vasculogenesis and Angiogenesis. Fundamental and Clinical Medicine. 2024;9(2):72-85. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-2-72-85

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)