Preview

Fundamental and Clinical Medicine

Advanced search

Placental Disorders as a Risk Factor for the Development of Postpartum Haemorrhage

https://doi.org/10.23946/2500-0764-2024-9-2-86-93

Abstract

The placenta is a functional link between mother and fetus during pregnancy and the most important factor determining newborn and infant health. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality worldwide and is affected by numerous factors including placental size. Here we analysed the role of placental disorders as a risk factor for the development of postpartum hemorrhage. We screened the available literature via PubMed, PubMed Central, Scopus, MEDLINE, ScienceDirect, Cochrane Library, and eLibrary from 2001 to October 2023. Placental insufficiency may cause either hyperplasia (i.e., placental expansion to meet the nutritional needs of the growing fetus) or hypoplasia, which cause deficiency in nutrients and oxygen and slows down fetal growth and development. Both of these conditions significantly affect the probability and volume of postpartum haemorrhage.

About the Authors

T. E. Belokrinitskaya
Chita State Medical Academy
Russian Federation

Prof. Tatiana Е. Belokrinitskaya, MD, DSc, Professor, Chief of the Department of Obstetrics and Gynecology, Pediatric Faculty and Faculty of Professional Retraining

39a, Gor’kogo Street, Chita, 672000 



A. G. Sidorkina
Chita State Medical Academy
Russian Federation

Dr. Anastasia G. Sidorkina, MD, Assistant Professor, Department of Obstetrics and Gynecology, Pediatric Faculty and Faculty of Professional Retraining

39a, Gor’kogo Street, Chita, 672000 



V. A. Mudrov
Chita State Medical Academy
Russian Federation

Dr. Viktor A. Mudrov, MD, DSc, Associate Professor, Chief of the Department of Obstetrics and Gynecology, Pediatric Faculty and Faculty of Professional Retraining

39a, Gor’kogo Street, Chita, 672000



References

1. Colson A, Sonveaux P, Debieve F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reproduct Update. 2021;27(3):531-569. https://doi.org/10.1093/humupd/dmaa053

2. Yong HEJ, Maksym K, Yusoff MAB, Salazar-Petres E, Nazarenko T, Zaikin A, David AL, Hillman SL, Sferruzzi-Perri AN. Integrated placental modelling of histology with gene expression to identify functional impact on fetal growth. Cells. 2023;12(7):1093. https://doi.org/10.3390/cells12071093

3. Gumina DL, Su EJ. Mechanistic insights into the development of severe fetal growth restriction. Clin Sci. 2023;137(8):679-695. https://doi.org/10.1042/CS20220284

4. Gonzalez-Brown V, Schneider P. Prevention of postpartum hemorrhage. Semin Fetal Neonatal Med. 2020;25(5):101129. https://doi.org/10.1016/j.siny.2020.101129

5. Gonzalez Carrillo LA, Ruiz de Aguiar C, Martin Muriel J, Rodriguez Zambrano MA Design of a postpartum hemorrhage and transfusion risk calculator. Heliyon. 2023;9(2):e13428. https://doi.org/10.1016/j.heliyon.2023.e13428

6. Shifman EM, Kulikov AV, Ronenson AM, Abazova IS, Adamyan LV, Andreeva MD, Artymuk NV, Baev OR, Barinov SV, Belokrinitskaya TE, Blauman SI, Bratishchev IV, Bukhtin AA, Vartanov VY, Volkov AB, Gorokhovskiy VS, Dolgushina NV, Drobinskaya AN, Kinzhalova SV, Kitiashvili IZ, Kogan IYu, Korolev AYu, Krasnopolskii VI, Kukarskaya II, Kurcer MA, Marshalov DV, Matkovskiy AA, Ovezov AM, Penzhoyan GA, Pestrikova TYu, Petruhin VA, Prihodko AM, Protopopova NV, Protsenko DN, Pyregov AV, Raspopin YuS, Rogachevskiy OV, Ryazanova OV, Savelyeva GM, Semenov YuA, Sitkin SI, Fatkullin IF, Fedorova TA, Filippov OS, Shvechkova MV, Shmakov RG, Shchegolev AV, Zabolotskikh IB. Prevention, the algorithm of reference, anesthesia and intensive care for postpartum hemorrhage. Guidelines. Annals of Critical Care. 2019;3:9-33 (In Russ). https://doi.org/10.21320/1818-474X-2019-3-9-33

7. Postpartum hemorrhage. Clinical recommendations. 2021. (In Russ). Available at: https://cr.minzdrav.gov.ru/recomend/119_2. Accessed: April 13, 2024.

8. Savelyeva GM, Sukhikh GT, Serova VN, Radzinsky VE, editors. Obstetrics: national guidelines. Moscow: GOETAR-Media; 2018. (In Russ).

9. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437-456. https://doi.org/10.1016/j.ajog.2019.05.044

10. Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev. Biol. 2023;11:1207671. https://doi.org/10.3389/fcell.2023.1207671

11. Staff AC, Fjeldstad H.E., Fosheim I.K., Moe K., Turowski G., Johnsen G.M., Alnaes-Katjavivi P., Sugulle M. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895-S906. https://doi.org/10.1016/j.ajog.2020.09.026

12. Gomes VCL, Woods AK, Crissman KR, Landry CA, Beckers KF, Gilbert BM, Ferro LR, Liu CC, Oberhaus EL, Sones JL. Kisspeptin is upregulated at the maternal-fetal interface of the preeclamptic-like BPH/5 mouse and normalized after synchronization of sex steroid hormones. Reprod med. 2022;3(4):263-279. https://doi.org/10.3390/reprodmed3040021

13. Pitz Jacobsen D, Fjeldstad HE, Johnsen GM, Fosheim IK, Moe K, Alnæs-Katjavivi P, Dechend R, Sugulle M, Staff AC. Acute atherosis lesions at the fetal-maternal border: current knowledge and implications for maternal. Front Immunol. 2021;12:791606. https://doi.org/10.3389/fimmu.2021.791606

14. Gonzalez-Vanegas O, Martinez-Perez O. SARS-CoV-2 infection and preeclampsia-how an infection can help us to know more about an obstetric condition. Viruses. 2023;15(7):1564. https://doi.org/10.3390/v15071564

15. Casey H, Dennehy N, Fraser A, Lees C, McEniery CM, Scott K, Wilkinson IB, Delles C. Placental syndromes and maternal cardiovascular health. Clin Sci. 2023;137(16):1211-1224. https://doi.org/10.1042/CS20211130

16. Epidemiology, risk factors, and perinatal outcomes of placental abruptiondetailed annual data and clinical perspectives from polish tertiary center. Int J Environ Res Public Health. 2022;19(9):5148. https://doi.org/10.3390/ijerph19095148

17. Belokrinitskaya TE, Frolova NI, Iozefson SA, Kolmakova KA. Structure of critical obstetric states and maternal mortality in patients of young and late reproductive age. Practical medicine. 2019;17(4):32-36. (In Russ). https://doi.org/10.32000/2072-1757-2019-4-32-36

18. Tenório MB, Ferreira RC, Moura FA, Bueno NB, de Oliveira ACM, Goulart MOF. Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxid Med Cell Longev. 2019;2019(4):8238727. https://doi.org/10.1155/2019/8238727

19. Belokrinitskaya TE, Chartorizhskaya NN, Kazantseva EV, Frolova NI. Fetoplatsentarnaya nedostatochnost’. Chita: Regional Printing House; 2009. (In Russ).

20. Lee B, Janzen C, Aliabadi AR, Lei MYY, Wu H, Liu D, Vangala SS, Devaskar SU, Sung K. Early pregnancy imaging predicts ischemic placental disease. Placenta. 2023;140:90-99. https://doi.org/10.1016/j.placenta.2023.07.297

21. Tral TG, Tolibova GKh, Musina EV, Yarmolinskaya MI. Molecular and morphological features of the formation of chronic placental insufficiency caused by different types of diabetes mellitus. Diabetes. 2020;23(2):18 (In Russ). https://doi.org/10.14341/DM10228

22. Zhu Y, Liu X, Xu Y, Lin Y. Hyperglycemia disturbs trophoblast functions and subsequently leads to failure of uterine spiral artery remodeling. Front Endocrinol. 2023;14:1060253. https://doi.org/10.3389/fendo.2023.1060253

23. Bhattacharjee D, Mondal SK, Garain P, Mandal P, Ray RN, Dey G. Histopathological study with immunohistochemical expression of vascular endothelial growth factor in placentas of hyperglycemic and diabetic women. J. Lab. Physicians. 2017;9(4):227-233. https://doi.org/10.4103/JLP.JLP_148_16

24. da Silva Pereira MM, de Melo IMF, Braga VAÁ, Teixeira ÁAC, Wanderley-Teixeira V. Effect of swimming exercise, insulin-associated or not, on inflammatory cytokines, apoptosis, and collagen in diabetic rat placentas. Histochem Cell Biol. 2022;157(4):467-479. https://doi.org/10.1007/s00418-021-02069-7

25. Ehlers E, Talton OO, Schust DJ, Schulz LC. Placental structural abnormalities in gestational diabetes and when they develop: a scoping review. Placenta. 2021;116:58-66. https://doi.org/10.1016/j.placenta.2021.04.005

26. Rais R, Starikov R, Robert W, Has P, He M. Clinicopathological correlation of large-for-gestational age placenta in pregnancies with pregestational diabetes. Pathol. Res. Pract. 2019;215(3):405-409. https://doi.org/10.1016/j.prp.2018.12.029

27. Nair S, Ormazabal V, Carrion F, Handberg A, McIntyre HD, Salomon C. Extracellular vesicle-mediated targeting strategies for long-term health benefits in gestational diabetes. Clin Sci. 2023;137(16):1311-1332. https://doi.org/10.1042/CS20220150

28. Sa R, Ma J, Yang J, Li DF, Du J, Jia JC, Li ZY, Huang N, A L, Sha R, Nai G, Hexig B, Meng JQ, Yu L. High TXNIP expression accelerates the migration and invasion of the GDM placenta trophoblast. BMC Pregnancy Childbirth. 2023;23(1):235. https://doi.org/10.1186/s12884-023-05524-6

29. Nguyen MT, Ouzounian JG. Evaluation and management of fetal macrosomia. Obstet Gynecol Clin North Am. 2021;48(2):387-399. https://doi.org/10.1016/j.ogc.2021.02.008

30. Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66:14-20. https://doi.org/10.1159/000371628

31. Wierzchowska-Opoka M, Grunwald A, Rekowska AK, Łomża A, Mekler J, Santiago M, Kabała Z, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B. Impact of obesity and diabetes in pregnant women on their immunity and vaccination. Vaccines. 2023;11(7):1247. https://doi.org/10.3390/vaccines11071247

32. Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. The placenta in fetal growth restriction: what is going wrong? Placenta. 2020;96:10-18. https://doi.org/10.1016/j.placenta.2020.05.003

33. Wu ZH, Li FF, Ruan LL, Feng Q, Zhang S, Li ZH, Otoo A, Tang J, Fu LJ, Liu TH, Ding YB. miR-181d-5p, which is upregulated in fetal growth restriction placentas, inhibits trophoblast fusion via CREBRF. J Assist Reprod Genet. 2023;40(11):2725-2737. https://doi.org/10.1007/s10815-023-02917-6

34. Sheibak N, Heidari Z, Mahmoudzadeh-Sagheb H, Narouei M. Reduced volumetric parameters of the placenta and extravillous trophoblastic cells in complicated pregnancies may lead to intrauterine growth restriction and small for gestational age birth. J Obstet Gynaecol Res. 2022;48(6):1355- 1363. https://doi.org/10.1111/jog.15225

35. Starikov R, Has P, Wu R, Nelson DM, He M. Small-for-gestational age placentas associate with an increased risk of adverse outcomes in pregnancies complicated by either type I or type II pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2022;35(9):1677-1682. https://doi.org/10.1080/14767058.2020.1767572


Review

For citations:


Belokrinitskaya T.E., Sidorkina A.G., Mudrov V.A. Placental Disorders as a Risk Factor for the Development of Postpartum Haemorrhage. Fundamental and Clinical Medicine. 2024;9(2):86-93. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-2-86-93

Views: 266


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)