Immunohistochemistry for assessing toxicity and mechanism of action of anticancer drugs during preclinical trials. From theory to practice
https://doi.org/10.23946/2500-0764-2024-9-3-74-85
Abstract
Aim. To identify the most suitable pathogenetic mechanisms for in-depth study of the antitumor and antimetastatic effects of tested hybrid organotin compounds using the immunohistochemical approach.
Materials and Methods. Here, we tested bis(3,5-di-tert-butyl-4-hydroxyphenylthiolate) dimethyltin (laboratory code Me-3), belonging to the class of hybrid organotin compounds, on 30 female C57Bl/6 mice using a universal model of transplantable tumors with spontaneous metastasis (B16 melanoma). 48 hours after tumor cell transplantation, we intraperitoneally administered Me-3 once daily to female C57Bl/6 mice for 10 days at a total dose (TD) of 375 mg/kg. For histological analysis, we used the primary tumor node of B16 melanoma. Immunophenotyping of B16 melanoma tissue samples was carried out using the polyclonal antibodies to transforming growth factor beta 1 (TGFβ-1), vascular endothelial growth factor A (VEGFA), Bcl2-associated X Protein (Bcl-2), cluster of differentiation 34 (CD34).
Results. After the exposure to Me-3, we found a reduced immunohistochemical signal to TGF-β1 and Bcl-2 3 in the tumor tissue. Low doses of Me-3 have also impacted angiogenesis.
Conclusion. Me-3 has a pro-apoptotic and anti-angiogenetic effects on B16 melanoma cells in C57Bl/6 mice.
Keywords
About the Authors
M. A. DodokhovaRussian Federation
Prof. Margarita A. Dodokhova, MD, DSc, Professor, Department of Pathological Physiology, Head of the Central Research Laboratory
29, Nahichevansky Prospekt, Rostov-onDon, 344022
M. A. Akimenko
Russian Federation
Dr. Marina А. Akimenko, MD, PhD, Assistant Professor, Department of Medical Biology and Genetics
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
O. V. Voronova
Russian Federation
Dr. Olga V. Voronova, MD, PhD, Chief Medical Officer
170A, Blagodatnaya Street, Rostov-on-Don, 344015
M. S. Alkhusein-Kulyaginova
Russian Federation
Dr. Margarita S. Alkhusein-Kulyaginova, MD, Assistant Professor, Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
N. A. Kornienko
Russian Federation
Dr. Natalia A. Kornienko, MD, PhD, Associate Professor, Department of Normal Anatomy
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
M. V. Gulyan
Russian Federation
Dr. Marina V. Gulyan, MD, PhD, Associate Professor, Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
D. N. Gyulmamedov
Russian Federation
Mr. David N. Gyulmamedov, Laboratory Assistant, Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
M.-M. Kh. Alasheva
Russian Federation
Mrs. Milana-Mariat Kh. Alasheva, Laboratory Assistant, Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
E. Sh. Kazimagomedova
Russian Federation
Mrs. Esmira Sh. Kazimagomedova, Laboratory Assistant, Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
D. B. Shpakovsky
Russian Federation
Dr. Dmitry B. Shpakovsky, PhD, Senior Researcher, Research Laboratory of the Bioelementoorganic Chemistry, Department of Medical Chemistry
and Fine Organic Synthesis
1, b. 3, Leninskie Gory, Moscow, 119991
E. R. Milaeva
Russian Federation
Dr. Elena R. Milaeva, DSc, Professor, Head of the Department of Medical Chemistry and Fine Organic Synthesis
1, b. 3, Leninskie Gory, Moscow, 119991
I. M. Kotieva
Russian Federation
Prof. Inga M. Kotieva, MD, DSc, Professor, Chief Scientific Officer, Chief of the Department of Pathophysiology
29, Nahichevansky Prospekt, Rostov-on-Don, 344022
References
1. González-Ballesteros MM, Mejía C, Ruiz-Azuara L. Metallodrugs: an approach against invasion and metastasis in cancer treatment. FEBS Open Bio. 2022;12(5):880−899. https://doi.org/10.1002/2211-5463.13381
2. Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev. 2022;51(7):2544−2582. https://doi.org/10.1039/d1cs00468a
3. Syed Annuar SN, Kamaludin NF, Awang N, Chan KM. Cellular basis of organotin(IV) derivatives as anticancer metallodrugs: A Review. Fron Chem. 2021;9:657599. https://doi.org/10.3389/fchem.2021.657599
4. Milaeva ER, Shpakovsky DB, Gracheva YA, Antonenko TA, Ksenofontova TD, Nikitin EA, Berseneva DA. Novel selective anticancer agents based on sn and au complexes. Mini-review. Pure and Applied Chemistry. 2020;92(8):1201−1216. https://doi.org/10.1515/pac-2019-1209
5. Milaeva ER, Dodokhova MA, Shpakovsky DB, Antonenko TA, Safronenko A, Kotieva I.M, Komarova EF, Gantsgorn ЕV, Alkhuseyn-Kulyaginova MS. Mechanisms of the Cytotoxic Action of Organotin Compounds. Journal Biomed. 2021;17(2):88−99. (In Russ.). https://doi.org/10.33647/2074-5982-17-2-88-99
6. Dodokhova MA, Safronenko AV, Kotieva IM, Sukhorukova NV, Gantsgorn EV, Alkhusein-Kulyaginova MS, Komarova EF, Shpakovsky DB, Milaeva ER. Pharmacotherapeutic potential’s evaluation of organotin compounds in vivo. Russian Journal of Biopharmaceuticals. 2021;13(3)30−34 (In Russ.). https://doi.org/10.30906/2073-8099-2021-13-3-30-34
7. Dodokhova MA, Safronenko АV, Kotieva IM, Komarova EF, Trepel VG, Alkhuseyn-Kulyaginova MS, Shpakovskiy DB, Milaeva ER. Study of acute oral toxicity of organotin compounds containing a 2,6-di-tert-butylphenol fragment. Ural'skij medicinskij zhurnal. 2021;20(3):73−77. (In Russ.). https://doi.org/10.52420/2071-5943-2021-20-3-73-77
8. Dodokhova MA, Voronova OV, Kotieva IM, Safronenko AV, Shlyk SV, Drobotya NV, Akimenko MA, Shpakovsky DB, Milaeva ER. Comparative analysis of morphological and biochemical changes after a single intragastric administration of hybrid organotin compounds. The Siberian Journal of Clinical and Experimental Medicine. 2023;38(1):167−174 (In Russian.). https://doi.org/10.29001/2073-8552-2023-38-1-167-174
9. Dodokhova MA, Safronenko AV, Kotieva IM, Alkhuseyn-Kulyaginova MS, Shpakovsky DB, Milaeva ER. Impact of organotin compounds on the growth of epidermoid Lewis carcinoma. Research Results in Pharmacology. 2021;7(4):81−88. https://doi.org/10.3897/rrpharmacology.7.71455
10. Dodokhova MA, Safronenko AV, Kotieva IM, Alkhuseyn-Kulyaginova MS, Shpakovsky DB, Milaeva ER. Evaluation of the pharmacological activity of hybrid organotin compounds in a B16 melanoma model in the classical and metronomic administration modes. Research Results in Pharmacology. 2022;8(1):85−94.
11. Koh J, Kwak Y, Kim J, Kim WH. High-Throughput Multiplex Immunohistochemical Imaging of the Tumor and Its Microenvironment. Cancer Res. Treat. 2020;52(1):98−108. https://doi.org/:10.4143/crt.2019.195
12. Workman S, Jabbour SK, Deek MP. A narrative review of genetic biomarkers in non-small cell lung cancer: an update and future perspectives. AME Med. J. 2023;8:6. https://doi.org/10.21037/amj2022-01
13. Kalra J, Baker J. Multiplex Immunohistochemistry for Mapping the Tumor Microenvironment. Methods Mol Biol. 2017;1554:237−251. https://doi.org/10.1007/978-1-4939-6759-9_17
14. Koh J, Kwak Y, Kim J, Kim WH. High-Throughput Multiplex Immunohistochemical Imaging of the Tumor and Its Microenvironment. Cancer Res Treat. 2020;52(1):98−108. https://doi.org/10.4143/crt.2019.195
15. Magaki S, Hojat SA, Wei B, So A, Yong WH. An Introduction to the Performance of Immunohistochemistry. Methods Mol Biol. 2019;1897:289−298. https://doi.org/10.1007/978-1-4939-8935-5_25
16. Schildhaus HU. Immunohistochemistry-based predictive biomarkers for lung cancer. Pathologe. 2020;41(1):21−31. https://doi.org/10.1007/s00292-020-00750-7
17. VanderLaan PA, Rangachari D, Majid A, Parikh MS, Gangadharan SP, Kent MS, McDonald DC, Huberman MS, Kobayashi SS, Costa DB. Tumor biomarker testing in non-small-cell lung cancer: A decade of change. Lung Cancer. 2018;116:90−95. https://doi.org/10.1016/j.lungcan.2018.01.002
18. Sukswai N, Khoury JD. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr Hematol Malig Rep. 2019;14(5):368−375. https://doi.org/10.1007/s11899-019-00533-9
19. Villar VH, Subotički T, Đikić D, Mitrović-Ajtić O, Simon F, Santibanez JF. Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy. Adv Exp Med Biol. 2023;1408:309−328. https://doi.org/10.1007/978-3-031-26163-3_17
20. Xue VW, Chung JY, Córdoba CAG, Cheung AH, Kang W, Lam EW, Leung KT, To KF, Lan HY, Tang PM. Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers (Basel). 2020;12(11):3099. https://doi.org/10.3390/cancers12113099
21. Xiong H, Liu X, Xie Z, Zhu L, Lu H, Wang C, Yao J. Metabolic Symbiosis-Blocking Nano-Combination for Tumor Vascular Normalization Treatment. Adv Healthc Mater. 2022;11(17):e2102724. https://doi.org/10.1002/adhm.202102724.
Review
For citations:
Dodokhova M.A., Akimenko M.A., Voronova O.V., Alkhusein-Kulyaginova M.S., Kornienko N.A., Gulyan M.V., Gyulmamedov D.N., Alasheva M.Kh., Kazimagomedova E.Sh., Shpakovsky D.B., Milaeva E.R., Kotieva I.M. Immunohistochemistry for assessing toxicity and mechanism of action of anticancer drugs during preclinical trials. From theory to practice. Fundamental and Clinical Medicine. 2024;9(3):74-85. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-3-74-85