Preview

Fundamental and Clinical Medicine

Advanced search

Immune response, smoking, and lung cancer: a systematic review

https://doi.org/10.23946/2500-0764-2024-9-3-86-97

Abstract

Here we review the role of innate and adaptive immunity at ascending lung cancer stages in smoking and non-smoking patients. T cell activity and the expression of pro-inflammatory cytokines were found to be elevated in smokers. As a consequence, smoking has been identified as a significant risk factor promoting lung carcinogenesis. Further experimental research in this area will allow the development of novel diagnostic approaches, including circulating biomarkers and personalised medicine.

About the Authors

V. Yu. Buslaev
Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Mr. Vladislav Yu. Buslaev, Leading Engineer, Laboratory of Cytogenetics

10, Leningradskiy Prospekt, Kemerovo, 650056



A. V. Minin
Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University
Russian Federation

Mr. Artem V. Minin, Engineer, Laboratory of Cytogenetics; ; PhD Student, Department of Genetics and Basic Medicine

10, Leningradskiy Prospekt, Kemerovo, 650056; 6, Krasnaya Street, Kemerovo, 650056



M. V. Katanakhova
Institute of Human Ecology, Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences; Kemerovo State University
Russian Federation

Mrs. Margarita V. Katanakhova, Engineer, Laboratory of Cytogenetics; PhD Student, Department of Genetics and Basic Medicine

10, Leningradskiy Prospekt, Kemerovo, 650056; 6, Krasnaya Street, Kemerovo, 650056



A. V. Shabaldin
Kemerovo State University; Kemerovo State Medical University
Russian Federation

Prof. Andrey V. Shabaldin, MD, PhD, Professor, Department of Polyclinic Pediatrics, Introduction to Pediatrics and Postgraduate Training; Professor, Department of Genetics and Basic Medicine

22a, Voroshilova Street, Kemerovo, 650056; 6, Krasnaya Street, Kemerovo, 650056



References

1. Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the Notion of Non-Small Cell Lung Cancer. Trends Mol Med. 2019;25(7):585-594. https://doi.org/10.1016/j.molmed.2019.04.012

2. Hosseini B, Olsson A, Bouaoun L, Hall A, Hadji M, Rashidian H, Naghibzadeh-Tahami A, Marzban M, Najafi F, Haghboost AA, Bofetta P, Kamangar F, Pukkala E, Etemadi A, Weiderpass E, Schuz J, Zendehdel K. Lung cancer risk in relation to jobs held in a nationwide case–control study in Iran. Occup Environ Med. 2022;79(12):831-838. https://doi.org/10.1136/oemed-2022-108463

3. Singh A, Kamal R, Ahamed I, Wagh M, Bihari V, Sathian B, Kesavachandran CN. PAH exposure-associated lung cancer: an updated meta-analysis. Occup Med. 2018;68(4):255-261. https://doi.org/10.1093/occmed/kqy049

4. Larionov A, Volobaev V, Serdyukova E. Application of the impedance method for comparative research of the chronic chemical stress impact on the development of the gastrointestinal tract pathology of male and female white outbred rats. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2018;20(5-4):614-620. (In Russian).

5. Babanov SA, Budash DS, Baykova AG, Ryzhova NS. Occupational malignant tumors of the lungs and other organs and potentially dangerous industrial carcinogens. CONSILIUM MEDICUM. 2017;19(11):39-46. (In Russian). https://doi.org/10.26442/2075-1753_19.11.39-46

6. Subramanian J, Govindan R. Molecular profile of lung cancer in never smokers. EJC Suppl. 2013:11(2):248-253. https://doi.org/10.1016/j.ejcsup. 2013. 07.004

7. Dong Y, Ren W, Qi J, Jin BO, Li Y, Tao H, Xu R, Li Y, Zhang Q, Han B. EGFR, ALK, RET, KRAS and BRAF alterations in never-smokers with non-small cell lung cancer. Oncol Lett. 2016;11(4):2371-2378. https://doi.org/10.3892/ol.2016.4235

8. Banat GA, Tretyn A, Pullamsetti SS, Wilhelm J, Weigert A, Olesch C, Ebel K, Stiewe T, Grimminger F, Seeger W, Fink L, Savai R. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma. PLoS ONE. 2015;10(9):e0139073. https://doi.org/10.1371/journal.pone.0139073

9. Stankovic B, Bjørhovde HAK, Skarshaug R, Aamodt H, Frafjord A, Muller E, Hammastrom C, Beraki K, Bakkewold ES, Woldbak PR, Helland A, Brustugun OT, Oynebraten I, Corthay A. Immune Cell Composition in Human Non-small Cell Lung Cancer. Front Immunol. 2019;9:3101. https://doi.org/10.3389/fimmu.2018.03101

10. Saab S, Zalzale H, Rahal Z, Khalifeh Y, Sinjab A, Kadara H. Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Front Immunol. 2020;11:159. https://doi.org/10.3389/fimmu.2020.00159

11. Whitsett JA, Wert SE, Weaver TE. Diseases of Pulmonary Surfactant Homeostasis. Annu Rev Pathol 2015;10(1):371-393. https://doi.org/10.1146/annurev-pathol-012513-104644

12. Tengroth L, Millrud CR, Kvarnhammar AM, Kumlien Georén S, Latif L, Cardell LO. Functional Effects of Toll-Like Receptor (TLR)3, 7, 9, RIG-I and MDA-5 Stimulation in Nasal Epithelial Cells. PLoS ONE. 2014;9(6):e98239. https://doi.org/10.1371/journal.pone.0098239

13. Milette S, Fiset PO, Walsh LA, Spicer JD, Quail DF. The innate immune architecture of lung tumors and its implication in disease progression. J Pathol. 2019;247(5):589-605. https://doi.org/10.1002/path.5241

14. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080-2089. https://doi.org/10.1111/cas.14069

15. Chen P, Li Z, Liang Y, Wei M, Jiang H, Chen S, Zhao Z. Identification of Hypoxia-Associated Signature in Colon Cancer to Assess Tumor Immune Microenvironment and Predict Prognosis Based on 14 Hypoxia-Associated Genes. Int J Gen Med. 2023;16:2503-2518. https://doi.org/10.2147/IJGM.S407005

16. Huang CC, Wang CH, Fu CH, Huang CC, Chang PH, Chen YW, Wu CC, Wu PW, Lee TJ. Association between cigarette smoking and interleukin-17A expression in nasal tissues of patients with chronic rhinosinusitis and asthma. Medicine. 2016;95(47):e5432. https://doi.org/10.1097/MD.0000000000005432

17. Azargoon A, Kharazmkia A, Kordalivand N, Birjandi M, Mir S. Evaluation of exposure to secondhand smoke and serum level of interleukin 18 in non-smokers. Ann Med Surg (Lond). 2022;73:103328-103242. https://doi.org/10.1016/j.amsu.2021

18. Zhu X, Zhan Y, Gu Y, Huang Q, Wang T, Deng Z, Xie J. Cigarette Smoke Promotes Interleukin-8 Production in Alveolar Macrophages Through the Reactive Oxygen Species/Stromal Interaction Molecule 1/Ca2+ Axis. Front Physiol. 2021;12:733650-73362. https://doi.org/10.3389/fphys.2021

19. Sumanasekera Wasana, Wainge Br. Does Cigarette Smoke Cause Interleukin 1 - Beta (Il-1ß) Production in Cardiac Stem Cells? J. Cell Biol. Cell Metab. 2016;3(1):1-6. https://doi.org/10.24966/CBCM-1943/100012

20. Koo JB, Han JS. Cigarette smoke extract-induced interleukin-6 expression is regulated by phospholipase D1 in human bronchial epithelial cells. J Toxicol Sci. 2016;41(1):77-89. https://doi.org/10.2131/jts.41.77

21. Jamil A, Rashid A, Majeed A. Correlation between Genotoxicity and Interleukin-6 in Smokers: A Rodent Model. J Coll Physicians Surg Pak. 2018;28(11):821-823. https://doi.org/10.29271/jcpsp.2018.11.821

22. Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA, White N, Mori M, Pham T-H, Ward CK, Criner GJ, Marchetti N, Mustelin T, Erjefalt JS, Kolbeck R, Humbles AA. Cigarette Smoke Silences Innate Lymphoid Cell Function and Facilitates an Exacerbated Type I Interleukin-33- Dependent Response to Infection. Immunity. 2015;42(3):566-579. https://doi.org/10.1016/j.immuni.2015.02.011

23. Shiels MS, Shu XO, Chaturvedi AK, Gao YT, Xiang YB, Cai Q, Hu W, Shelton G, Ji BT, Pinto LA, Kemp TJ, Rothman N, Zheng W, Hildesheim A, Lan Q . A prospective study of immune and inflammation markers and risk of lung cancer among female never smokers in Shanghai. Carcinogenesis. 2017;38(10):1004-1010. https://doi.org/10.1093/carcin/bgx075

24. Ke W, Zhang L, Dai Y. The role of IL‐6 in immunotherapy of non-small cell lung cancer (NSCLC) with immune-related adverse events (irAEs). Thorac Cancer. 2020;11(4):835-839. https://doi.org/10.1111/1759-7714.13341

25. Shill MC, Biswas B, Islam M, Rima SS, Ferdausi FA, Chowdhury Q, Reza HM, Bepari AK. Screening of Plasma IL-6 and IL-17 in Bangladeshi Lung Cancer Patients. Heliyon. 2023;9(10):e20471. https://doi.org/10.1101/2022.03.27.22272998

26. Ding X, Zhang J, Liu D, Xu W, Lu DY, Zhang LP, Su B. Serum expression level of IL-6 at the diagnosis time contributes to the longterm prognosis of SCLC patients. J Cancer. 2018;9(5):792-796. https://doi.org/10.7150/jca.22656

27. Brenner DR, Fanidi A, Grankvist K, Muller DC, Brennan P, Manjer J, Byrnes G, Hodge A, Severi G, Giles GG, Johansson M, Johansson M. Inflammatory Cytokines and Lung Cancer Risk in 3 Prospective Studies. Am J Epidemiol. 2017;185(2):86-95. https://doi.org/10.1093/aje/kww159

28. Wang V, Heffer A, Roztocil E, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS ONE. 2022;17(9):e0271950. https://doi.org/10.1371/journal.pone.0271950

29. Ramundo V, Palazzo ML, Aldieri E. TGF-β as Predictive Marker and Pharmacological Target in Lung Cancer Approach. Cancers. 2023;15(8):2295. https://doi.org/10.3390/cancers15082295

30. Dutta RK, Chinnapaiyan S, Rasmussen L, Raju SV, Unwalla HJ. A Neutralizing Aptamer to TGFBR2 and miR-145 Antagonism Rescue Cigarette Smoke- and TGF-β-Mediated CFTR Expression. Mol Ther. 2019;27(2):442-455. https://doi.org/10.1016/j.ymthe.2018.11.017

31. Schupp JC, Binder H, Jäger B, Cillis G, Zissel G, Muller-Quernheim J, Prasse A. Macrophage Activation in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. PLoS ONE. 2015;10(1):e0116775. https://doi.org/10.1371/journal.pone.0116775

32. Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022;77(1):94-101. https://doi.org/10.1136/thoraxjnl-2020-216296

33. Wang YD, Li Z, Li FS. Differences in key genes in human alveolar macrophages between phenotypically normal smokers and nonsmokers: diagnostic and prognostic value in lung cancer. Int. J. Clin. Exp. Pathol. 2020;13(11):2788-2805

34. Pirlog R, Chiroi P, Rusu I, Jurj AM, Budisan L, Pop-Bica C, Braicu C, Crisan D, Sabourin JC, Berindan-Neagoe I. Cellular and Molecular Profiling of Tumor Microenvironment and Early-Stage Lung Cancer. Int J Mol Sci. 2022;23(10):5346. https://doi.org/10.3390/ijms23105346

35. De Alencar VTL, Figueiredo AB, Corassa M, Gollob KJ, Cordeiro De Lima VC. Lung cancer in never smokers: Tumor immunology and challenges for immunotherapy. Front Immunol. 2022;13:984349. https:// doi.org/10.3389/fimmu.2022.984349

36. Sun Y, Yang Q, Shen J, Zhang N, Luo P, Zhang J. The Effect of Smoking on the Immune Microenvironment and Immunogenicity and Its Relationship With the Prognosis of Immune Checkpoint Inhibitors in Non-small Cell Lung Cancer. Front Cell Dev Biol. 2021;9:745859. https://doi.org/10.3389/fcell.2021.745859

37. Glushkov AN, Polenok EG, Gordeeva LA, Mun SA, Kostyanko MV, Antonov AV, Verzhbitskaya NE, Voronina EN, Kolpinskiy GI. Immunological imbalance, gene polymorphism of biotransformation enzymes, and steroid hormone receptors in tumors in breast cancer patients. Medical Immunology (Russia)/Meditsinskaya Immunologiya. 2022;24(4):765-778. (In Russian). https://doi.org/10.15789/1563-0625-IIG-2493

38. Glushkov AN, Polenok EG, Mun SA, Gordeeva LA, Kostyanko MV, Antonov AV, Verzhbitskaya NE, Vafin IA. Personal immunological phenotype and breast cancer risk in postmenopausal women. Russian Journal of Immunology. 2019;13(1):44-52. (In Russian). https://doi.org/10.31857/S102872210005019-5

39. Minina VI, Druzhinin VG, Larionov AV, Baranova ED, Buslaev VYU., Matskova L.V., Bakanova M.L. Microarray-based transcriptome analysis of peripheral blood mononuclear cells in lung cancer patients. Russian journal of genetics. 2022;7:814-822. (In Russian). https://doi.org/10.31857/S0016675822070128

40. Jeganathan N, Cleland D, Sathananthan M. The association of lung cancer with pulmonary fibrosis. ERJ Open Res. 2022;8(1):00505-02021. https://doi.org/10.1183/23120541.00505-2021

41. Cui L, Fang Z, De Souza CM, Lerbs T, Guan Y, Li I, Charu V, Chen SY, Weissman I, Wernig G. Innate immune cell activation causes lung fibrosis in a humanized model of long COVID. Proc Natl Acad Sci USA. 2023;120(10):e2217199120. https://doi.org/10.1073/pnas.2217199120

42. Kärkkäinen M, Kettunen HP, Nurmi H, Selander T, Purokivi M, Kaarteenaho R. Effect of smoking and comorbidities on survival in idiopathic pulmonary fibrosis. Respir Res. 2017;18(1):160. https://doi.org/10.1186/s12931-017-0642-6

43. Hao D, Han G, Sinjab A, Gomez-Bolanos LI, Lazcano R, Serrano A, Hernandez SD, Dai E, Cao X, Hu J, Dang M, Wang R, Chu Y, Song X, Zhang J, Parra ER, Wargo JA, Swisher SG, Cascone T, Sepesi B, Futreal AP, Li M, Dubinett SM, Fujimoto J, Solis Soto LM, Wistuba II, Stevenson CS, Spira A, Shalapour S, Kadara H, Wang L. The SingleCell Immunogenomic Landscape of B and Plasma Cells in Early-Stage Lung Adenocarcinoma. Cancer Discov. 2022;12(11):2626-2645. https://doi.org/10.1158/2159-8290.CD-21-1658

44. Luo W, Zeng Z, Jin Y, Yang L, Fan T, Wang Z, Pan Y, Yang Y, Yao M, Li Y, Xiao X, Wang G, Wang C, Chang S, Che G, Zhang L, Li Y, Peng Y, Li W. Distinct immune microenvironment of lung adenocarcinoma in never-smokers from smokers. Cell Rep Med. 2023;4(6):101078. https://doi.org/10.1016/j.xcrm.2023.101078


Review

For citations:


Buslaev V.Yu., Minin A.V., Katanakhova M.V., Shabaldin A.V. Immune response, smoking, and lung cancer: a systematic review. Fundamental and Clinical Medicine. 2024;9(3):86-97. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-3-86-97

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)