Preview

Fundamental and Clinical Medicine

Advanced search

Agent-based modeling of spreading infectious diseases: state-of-the-art

https://doi.org/10.23946/2500-0764-2024-9-3-109-119

Abstract

Agent-based simulation modeling provides additional opportunities to study the patterns of pathogen spread among populations, taking into account the complexity and stochasticity of the epidemic process. Agent-based modeling is considered as a computational approach in which agents with predefined characteristics can interact with each other and with the environment according to pre-specified rules. Here I consider the historical background of agent-based modeling in the field of infectious diseases, describe the basic definitions and classifications, and discuss strengths and weaknesses of agent-based modeling. The article details four interconnected main components that are subject to modeling: disease features (transmission routes, features of the infectious process), the population, movement patterns, and the environment. The article also addresses the need for validation of agent-based models. The reader's attention is drawn to the following important features of agent-based simulation models: the ability to model various scenarios on different scales (global, national, regional); the ability to use them in epidemiological studies when controlled experiments are impossible (e.g., consequences of non-compliance with preventive measures, spread of «cultural pathogens»); agents can make different decisions depending on their characteristics; consideration of behavioral aspects at the individual level; the ability to account for individual mobility and social contacts of agents. Agent-based simulation models are also well-suited for epidemiological modeling, particularly in the field of infectious disease surveillance, including emerging infections (e.g., COVID-19).

About the Author

N. V. Saperkin
Privolzhsky Research Medical University
Russian Federation

Dr. Nikolay V. Saperkin, MD, PhD, Associate Professor, Department of Epidemiology, Microbiology and Evidence-Based Medicine

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603095



References

1. Ageeva AF. Simulation of epidemics: agent-based approach. Modeling, Optimization and Information Technology. 2020;8(3):1-13. (In Russian). https://doi.org/10.26102/2310-6018/2020.30.3.030

2. Gerasimov AN. Models and statistical analysis in the epidemiology of infectious diseases. 2019;3:80-83. Pacific medical journal. (In Russian). https://doi.org/10.17238/PmJ1609-1175.2019.3.80-83

3. Kondratyev MA. Forecasting methods and models of disease spread. Computer research and modeling. 2013;5(5):863-882. (In Russian). https://doi.org/10.20537/2076-7633-2013-5-5-863-882

4. Sarkisov AD. Contribution of Academician OV Baroyan in the development of epidemiology. Bulletin OF Semashko national research institute of public health. 2021; 1:86-91. (In Russian). https://doi.org/10.25742/NRIPH.2021.01.011

5. Šešelja D. Agent-based modeling in the philosophy of science. In: Zalta EN, Nodelman U, eds. The Stanford Encyclopedia of Philosophy. Winter 2023 Edition. Available at: https://plato.stanford.edu/archives/win2023/entries/agent-modeling-philscience. Accessed: Jule 7, 2024.

6. Crooks AT, Hailegiorgis AB. An agent-based modeling approach applied to the spread of cholera. Environmental Modelling Software. 2014;62:164- 177. https://doi.org/10.1016/j.envsoft.2014.08.027

7. Tian Y, Osgood ND, Al-Azem A, Hoeppner VH. Evaluating the effectiveness of contact tracing on tuberculosis outcomes in Saskatchewan using individual-based modeling. Health Educ Behav. 2013;40 (1 Suppl):98S-110S. https://doi.org/10.1177/1090198113493910

8. Escobar E, Durgham R, Dammann O, Stopka TJ. Agent-based computational model of the prevalence of gonococcal infections after the implementation of HIV pre-exposure prophylaxis guidelines. Online J Public Health Inform. 2015;7(3):e224. https://doi.org/10.5210/ojphi.v7i3.6104

9. Abdidizaji S, Yalabadi AK, Yazdani-Jahromi M, Garibay OO, Garibay I. Agent-based modeling of C. difficile spread in hospitals: assessing contribution of high-touch vs. low-touch surfaces and inoculations’ containment Impact. arXiv preprint arXiv:2401.11656 [cs.MA]. 2024:1-16. 10. (In Russian). Available at: https://arxiv.org/html/2401.11656v1. Accessed: Jule 7, 2024.

10. Nguyen LKN, Megiddo I, Howick S. Simulation models for transmission of health care-associated infection: A systematic review. Am J Infect Control. 2020;48(7):810-821. https://doi.org/10.1016/j.ajic.2019.11.005

11. Das TK, Savachkin AA, Zhu Y. A large-scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies. IIE Transactions. 2008;40(9):893-905. https://doi.org/10.1080/07408170802165856

12. Rakowski F, Gruziel M, Bieniasz-Krzywiec L, Radomski JP. Influenza epidemic spread simulation for Poland – a large scale, individual based model study. Physica A: Statistical Mechanics and its Applications. 2010;389(16):3149-3165. https://doi.org/10.1016/j.physa.2010.04.029

13. Simoes JM. Modelling a mumps outbreak through spatially explicit agents. Potentials of Complexity Science for Business, Governments, and the Media. 2006:1-16. Available at : http://www.casa.ucl.ac.uk/joanamargarida/papers/SimoesJ.pdf Accessed: 23 Dezember, 2022.

14. Olsen J, Jepsen MR. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int J Technol Assess Health Care. 2010;26(2):183-191. https://doi.org/10.1017/S0266462310000085

15. Erfani A, Frias-Martinez V. A fairness assessment of mobility-based COVID-19 case prediction models. PLoS One. 2023;18(10):e0292090. https://doi.org/10.1371/journal.pone.0292090

16. Koichubekov B, Takuadina A, Korshukov I, Sorokina M, Turmukhambetova A. The Epidemiological and Economic Impact of COVID-19 in Kazakhstan: An Agent-Based Modeling. Healthcare (Basel). 2023;11(22):2968. https://doi.org/10.3390/healthcare11222968

17. Platonova TA, Golubkova AA, Obabkov VN, Kolesnikova SJu, Smirnova SS. Multi-factor simulation modeling in the short-and long-term prognosis of measles incidence. Epidemiology and Infectious Diseases. 2018;23(5):255-233. (in Russian). https://doi.org/10.18821/1560-9529-2018-23-5-225-233

18. Asatryan MN, Gerasimuk ER, Strukov DR, Shmyr IS, Vekhov AO, Ershov IF, Labodin AV, Nozdracheva AV, Semenenko TA, Naroditsky BS, Pronin AV. Development of software tools based on multi-agent modeling and implemented in the new generation geographic information system for solving epidemiological problems. Journal of microbiology, epidemiology and immunobiology. 2021;98(4):468-480. (In Russian). https://doi.org/10.36233/0372-9311-130

19. Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NT, Cooley PC, Wheaton WD, Fyshe A, Galloway DD, Sriram A, Guclu H, Abraham T, Burke DS. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health. 2013;13:940. https://doi.org/10.1186/1471-2458-13-940

20. Merler S, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, Chao DL, Longini IM Jr, Halloran ME, Vespignani A. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis. 2015;15(2):204-211. https://doi.org/10.1016/S1473-3099(14)71074-6

21. Merler S, Ajelli M, Fumanelli L, Gomes MFC, Piontti AP, Rossi L, Chao DL, Halloran ME, Vespignani A. Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. The Lancet Infectious Diseases. 2015;15(2):204-211. https://doi.org/10.1016/S1473-3099(14)71074-6

22. Amadi M, Shcherbacheva A, Haario H. Agent-based modelling of complex factors impacting malaria prevalence. Malar J. 2021;20(1):185. https://doi.org/10.1186/s12936-021-03721-2

23. Hu H, Gong P, Xu B. Spatially explicit agent-based modelling for schistosomiasis transmission: human-environment interaction simulation and control strategy assessment. Epidemics. 2010;2(2):49-65. https://doi.org/10.1016/j.epidem.2010.03.004

24. Liu J, Xia S. Computational Epidemiology: From Disease Transmission Modeling to Vaccination Decision Making. Springer Cham; 2020. https://doi.org/10.1007/978-3-030-52109-7

25. Mac Namee B, Cunningham P. Creating socially interactive no-player characters: The m-SIV system. International Journal of Intelligent Games and Simulation. 2003;2(1):186-221.

26. Hunter E, MacNamee B, Kelleher J. A taxonomy for agent-based models in human infectious disease epidemiology. Journal of Artificial Societies and Social Simulation. 2017;20(3):2. https://doi.org/10.18564/jasss.3414

27. Bisset KR, Aji AM, Marathe MV, Feng WC. High-performance biocomputing for simulating the spread of contagion over large contact networks. BMC Genomics. 2012;13 Suppl 2:S3. https://doi.org/10.1186/1471-2164-13-S2-S3

28. Morgan JS, Howick S, Belton V. A toolkit of designs for mixing Discrete Event Simulation and System Dynamics. European Journal of Operational Research. 2017;257(3):907-918. https://doi.org/10.1016/j.ejor.2016.08.016

29. Epstein, JM, Parker J, Cummings D, Hammond, RA. Coupled contagion dynamics of fear and disease: Mathematical and computational explorations. PLOS one. 2008;3(12):1-11. https://doi.org/10.1371/journal.pone.0003955

30. Dunham JB. An agent-based spatially explicit epidemiological model in MASON. Journal of Artificial Societies and Social Simulation. 2005;9(1):3-7. Available at: https://www.jasss.org/9/1/3.html. Accessed: 15 July, 2024.

31. McLean A, McDonald W, Goodridge D, Osgood N. Agent-Based Modeling: A Method for Investigating Challenging Research Problems. Nurs Res. 2019;68(6):473-482. https://doi.org/10.1097/NNR.0000000000000390

32. Mobile Phones: Location Tracking. (In Russian). Available at: https://ssd.eff.org/ru/module/мобильные-телефоны-отслеживание-местоположения. Accessed: 15 July, 2024.

33. Aleman DM, Wibisono TG, Schwartz B. A nonomogeneous agent-based simulation approach to modeling the spread of disease in a pandemic. Informs. 2011;41(3):301-315. https://doi.org/10.1287/inte.1100.0550

34. Lee BY, Brown ST, Cooley P, Potter MA, Wheaton WD, Voorhees RE, Stebbins S, Grefenstette JJ, Zimmer SM, Zimmerman RK, Assi TM, Bailey RR, Wagener DK, Burke DS. Simulating school closure strategies to mitigate an influenza epidemic. J Public Health Manag Pract. 2010;16(3):252-261. https://doi.org/10.1097/PHH.0b013e3181ce594e

35. Shi H, Wang J, Cheng J, Qi X, Ji H, Struchiner CJ, Villela DA, Karamov EV, Turgiev AS. Big data technology in infectious diseases modeling, simulation, and prediction after the COVID-19 outbreak. Intell Med. 2023;3(2):85-96. https://doi.org/10.1016/j.imed.2023.01.002

36. Khashoggi BF, Murad A. Issues of healthcare planning and GIS: a review. ISPRS Int. J. Geo-Inf. 2020;9(6):352. https://doi.org/10.3390/ijgi9060352

37. Waleed M, Um T-W, Kamal T, Khan A, Zahid ZU. SIM-D: An AgentBased Simulator for Modeling Contagion in Population. Applied Sciences. 2020;10(21):7745. https://doi.org/10.3390/app10217745

38. Mniszewski SM, Del Valle SY. EpiSimS: Large-scale agent-based modeling of the spread of disease. Technical report, Los Alamos National Laboratory (LANL). 2013. Available at: file:///C:/Users/toropova.ov/Downloads/EpiSimS_Large_Scale_Agent_based_Modeling.pdf. Accessed: 15 July, 2024.

39. de Mooij J, Bhattacharya P, Dell’Anna D, Dastani M, Logan B, Swarup S. A framework for modeling human behavior in large-scale agent-based epidemic simulations. Simulation. 2023;99(12):1183-1211. https://doi.org/10.1177/00375497231184898

40. Van den Broeck W, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, Vespignani A. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis. 2011;11:37. https://doi.org/10.1186/1471-2334-11-37.

41. Kirillin M, Khilov A, Perekatova V, Sergeeva E, Kurakina D, Fiks I, Saperkin N, Tang M, Zou Y, Macau E, Pelinovsky E. Multicentral agentbased model of four waves of COVID-19 spreading in Nizhny Novgorod region of Russian Federation. Journal of Biomedical Photonics & Engineering. 2023;9(1):1-8. https://doi.org/10.18287/JBPE23.09.010306


Review

For citations:


Saperkin N.V. Agent-based modeling of spreading infectious diseases: state-of-the-art. Fundamental and Clinical Medicine. 2024;9(3):109-119. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-3-109-119

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)