Preview

Fundamental and Clinical Medicine

Advanced search

The influence of risk factors for cardiovascular diseases on the morphofunctional properties of mesenchymal stem cells

https://doi.org/10.23946/2500-0764-2024-9-4-95-106

Abstract

Today, the contribution of mesenchymal stem cells (MSCs) to the mechanism of development of pathologies such as calcification of heart valves and blood vessels is being actively discussed. This is due to the fact that the formation of calcifications in the cardiovascular system (CVS) repeats the process of ossification, that is, it is mediated by specific bone cells - osteocytes. Since MSCs are progenitor cells capable of multilineage differentiation, they are considered as a source of osteocytes in the cardiovascular system. The question of what stimuli activate the osteogenesis program in MSCs localized in the CVS organs remains open. The presence of risk factors for cardiovascular diseases (CVD) has a systemic effect on the body, as it contributes to the development of pathological processes such as hypoxia and inflammation, which lead to remodeling of the MSC niche and changes in their function. This review systematizes scientific studies devoted to the influence of modifiable and non-modifiable CVD risk factors on the morphofunctional properties of MSCs.

The purpose of this review is to systematize existing knowledge about the role of modifiable and non-modifiable CVD risk factors in changing the morphology and function of MSCs.

The functioning of MSCs depends on the age of the donor and the duration of their cultivation in vitro, due to the activation of cellular aging processes. The influence of gender on MSCs is controversially described in the literature; however, there is evidence of the participation of estrogen in regulating the balance between osteogenic and adipogenic differentiation of progenitor cells. The presence of comorbid conditions such as hypercholesterolemia, obesity, and diabetes mellitus contribute to the acceleration of cellular aging, modification of the MSC phenotype, and influence the activity of their proliferation and differentiation potential. Thus, the complex of pathological processes accompanying obesity and diabetes mellitus leads to a decrease in the differentiated potential of MSCs, and also induces the expression of genes that are markers of cellular aging. An increase in the concentration of cholesterol esters in the microenvironment of MSCs induces a program of osteogenic differentiation in them, and exposure to high density lipoproteins (HDL) has a positive effect on proliferation. Cigarette smoke activates stem cell apoptosis, reduces proliferation, and induces osteogenesis.

About the Authors

T. A. Slesareva
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Russian Federation

Dr. Tamara A. Slesareva, MD, PhD Student, Pathological physiology Department

22a, Voroshilova Street, Kemerovo, 650056



E. G. Uchasova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Dr. Evgenia G. Uchasova, MD, PhD, Senior Researcher at the Laboratory of Homeostasis

6, Аcademician Leonid Barbarash blvd., Kemerovo, 650002



Yu. A. Dyleva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Dr. Yuliya A. Dyleva, MD, PhD, Senior Researcher at the Laboratory of Homeostasis Research

6, Аcademician Leonid Barbarash blvd., Kemerovo, 650002



E. V. Belik
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Dr. Ekaterina V. Belik, MD, PhD, Senior Researcher at the Laboratory of Homeostasis Research

6, Аcademician Leonid Barbarash blvd., Kemerovo, 650002



O. V. Gruzdeva
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Russian Federation

Prof. Olga V. Gruzdeva, MD, DSc, Professor of the Russian Academy of Sciences, Head of the Laboratory of Homeostasis Research; Head of the Medical Biochemistry Department

6, Аcademician Leonid Barbarash blvd., Kemerovo, 650002

22a, Voroshilova Street, Kemerovo, 650056



References

1. Kharchenko VV, Ivanov VA, Vetrov AO. Cardiac ishemia: complications, epidemiology, prevention. Integrative trends in medicine and education. 2022;3:149-153. (In Russian).

2. ESC Guidelines on cardiovascular disease prevention in clinical practice. Russian Journal of Cardiology. 2022;27(7):5155. (In Russian). https://doi.org/10.15829/1560-4071-2022-5155

3. Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK, Kuppe C, Kaesler N, Chang-Panesso M, Machado FG, Gratwohl S, Madhurima K, Hutcheson JD, Jain S, Aikawa E, Humphreys BD.Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell. 2016;19(5):628-642. https://doi.org/10.1016/j.stem.2016.08.001

4. Xie C, Ouyang L, Chen J, Zhang H, Luo P, Wang J, Huang H. The Emerging Role of Mesenchymal Stem Cells in Vascular Calcification. Stem Cells Int. 2019;2019:2875189. https://doi.org/10.1155/2019/2875189

5. Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol. 2020;8:592. https://doi.org/10.3389/fcell.2020.00592

6. Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Rev Rep. 2021;17(4):1137-1153. https://doi.org/10.1007/s12015-020-10097-4

7. Abe H, Semba H, Takeda N. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. J Atheroscler Thromb. 2017;24(9):884-894. https://doi.org/10.5551/jat.RV17009

8. Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines. 2022;10(8):1938. https://doi.org/10.3390/biomedicines10081938

9. Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di Segni M, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, DiFrancesco D, Pompilio G, Quaini F, Gaetano C, Capogrossi MC. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res. 2011;89(3):650-660. https://doi.org/10.1093/cvr/cvq290

10. Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY). 2019;11(23):11756-11769. https://doi.org/10.18632/aging.102491

11. Xie C, Ouyang L, Chen J, Zhang H, Luo P, Wang J, Huang H. The Emerging Role of Mesenchymal Stem Cells in Vascular Calcification. Stem Cells Int. 2019;2019:2875189. https://doi.org/10.1155/2019/2875189

12. Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci. 2022;23(5):2425. https://doi.org/10.3390/ijms23052425

13. Lambert C, Arderiu G, Bejar MT, Crespo J, Baldellou M, Juan-Babot O, Badimon L. Stem cells from human cardiac adipose tissue depots show different gene expression and functional capacities. Stem Cell Res Ther. 2019;10(1):361. https://doi.org/10.1186/s13287-019-1460-1

14. Matloch Z, Kotulák T, Haluzík M. The role of epicardial adipose tissue in heart disease. Physiol Res. 2016;65(1):23-32. https://doi.org/10.33549/physiolres.933036

15. Chang L, Garcia-Barrio MT, Chen YE. Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2020;40(5):1094-1109. https://doi.org/10.1161/ATVBAHA.120.312464

16. Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider RK, Kuppe C, Kaesler N, Chang-Panesso M, Machado FG, Gratwohl S, Madhurima K, Hutcheson JD, Jain S, Aikawa E, Humphreys BD. Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell. 2016;19(5):628-642. https://doi.org/10.1016/j.stem.2016.08.001

17. Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology. 2022;68(3):339-352. https://doi.org/10.1159/000516668

18. de Girolamo L, Lopa S, Arrigoni E, Sartori MF, Baruffaldi Preis FW, Brini AT. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy. 2009;11(6):793-803. https://doi.org/10.3109/14653240903079393

19. Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8. https://doi.org/10.1186/1479-5876-12-8

20. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15(11):1139-1153. https://doi.org/10.15252/embr.201439245

21. Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev. 2018;170:30-36. https://doi.org/10.1016/j.mad.2017.08.005

22. Yang SR, Park JR, Kang KS. Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. Oxid Med Cell Longev. 2015;2015:486263. https://doi.org/10.1155/2015/486263

23. Liu Y, Chen Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. Curr Mol Biol Rep. 2020;6(4):173-182. https://doi.org/10.1007/s40610-020-00141-0

24. Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest. 2010;120(10):3455-3465. https://doi.org/10.1172/JCI42528

25. Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G, Tang T, Ren Y, Tucker HO, Yao Z, Guo X. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127(4):1241-1253. https://doi.org/10.1172/JCI89511

26. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem. 2009 ;284(16):10601-10609. https://doi.org/10.1074/jbc.M808742200

27. Liu M, Lei H, Dong P, Fu X, Yang Z, Yang Y, Ma J, Liu X, Cao Y, Xiao R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant. 2017;26(9):1505-1519. https://doi.org/10.1177/0963689717721221

28. Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol. 2022;9:742088. https://doi.org/10.3389/fcell.2021.742088

29. Lee HJ, Lee H, Na CB, Song IS, Ryu JJ, Park JB. Evaluation of the Age- and Sex-Related Changes of the Osteogenic Differentiation Potentials of Healthy Bone Marrow-Derived Mesenchymal Stem Cells. Medicina (Kaunas). 2021;57(6):520. https://doi.org/10.3390/medicina57060520

30. Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013; 111:46. https://doi.org/10.1186/1741-7015-11-146

31. Selle M, Koch JD, Ongsiek A, Ulbrich L, Ye W, Jiang Z, Krettek C, Neunaber C, Noack S. Influence of age on stem cells depends on the sex of the bone marrow donor. J Cell Mol Med. 2022;26(5):1594-1605. https://doi.org/10.1111/jcmm.17201

32. Bitirim CV, Ozer ZB, Akcali KC. Estrogen receptor alpha regulates the expression of adipogenic genes genetically and epigenetically in rat bone marrow-derived mesenchymal stem cells. PeerJ. 2021;9:e12071. https://doi.org/10.7717/peerj.12071

33. Sun S, Adyshev D, Dudek S, Paul A, McColloch A, Cho M. Cholesterol-Dependent Modulation of Stem Cell Biomechanics: Application to Adipogenesis. J Biomech Eng. 2019;141(8):0810051–08100510. https://doi.org/10.1115/1.4043253

34. Li H, Guo H, Li H. Cholesterol loading affects osteoblastic differentiation in mouse mesenchymal stem cells. Steroids. 2013;78(4):426-433. https://doi.org/10.1016/j.steroids.2013.01.007

35. Liao J, Chen X, Li Y, Ge Z, Duan H, Zou Y, Ge J. Transfer of bone-marrow-derived mesenchymal stem cells influences vascular remodeling and calcification after balloon injury in hyperlipidemic rats. J Biomed Biotechnol. 2012;2012:165296. https://doi.org/10.1155/2012/165296

36. Shen H, Zhou E, Wei X, Fu Z, Niu C, Li Y, Pan B, Mathew AV, Wang X, Pennathur S, Zheng L, Wang Y. High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways. Stem Cell Res Ther. 2015;6(1):95. https://doi.org/10.1186/s13287-015-0090-5

37. Muraleva NA, Kolosova NG. Alteration of the mek1/2–erk1/2 signaling pathway in the retina with age and with the development of amd-like retinopathy. Biochemistry. 2023;88(2):274-284. (In Russian).

38. Lin YH, Kang L, Feng WH, Cheng TL, Tsai WC, Huang HT, Lee HC, Chen CH. Effects of Lipids and Lipoproteins on Mesenchymal Stem Cells Used in Cardiac Tissue Regeneration. Int J Mol Sci. 2020;21(13):4770. https://doi.org/10.3390/ijms21134770

39. Raman N, Imran SAM, Ahmad Amin Noordin KB, Wan Kamarul Zaman WS, Nordin F. Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon. 2022;8(11):e11624. https://doi.org/10.1016/j.heliyon.2022.e11624

40. Zhao L, Liu X, Zhang Y, Liang X, Ding Y, Xu Y, Fang Z, Zhang F. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res. 2016;344(1):30-39. https://doi.org/10.1016/j.yexcr.2016.03.024

41. Yablonsky PK, Sukhovskaya OA. Smoking influence on the outcomes and complications of coronary bypass surgery. Russian Journal of Cardiology. 2018;(1):66-71. (In Russian). https://doi.org/10.15829/1560-4071-2018-1-66-71

42. Wahl EA, Schenck TL, Machens HG, Egaña JT. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential. Sci Rep. 2016;6:22957. https://doi.org/10.1038/srep22957

43. Siggins RW, Hossain F, Rehman T, Melvan JN, Zhang P, Welsh DA. Cigarette Smoke Alters the Hematopoietic Stem Cell Niche. Med Sci (Basel). 2014;2(1):37-50. https://doi.org/10.3390/medsci2010037

44. Wahl EA, Schenck TL, Machens HG, Egaña JT. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential. Sci Rep. 2016;6:22957. https://doi.org/10.1038/srep22957

45. Kuroda M, Sakaue H. Adipocyte Death and Chronic Inflammation in Obesity. J Med Invest. 2017;64(3.4):193-196. https://doi.org/10.2152/jmi.64.193

46. Olona A, Mukhopadhyay S, Hateley C, Martinez FO, Gordon S, Behmoaras J. Adipoclast: a multinucleated fat-eating macrophage. BMC Biol. 2021;19(1):246. https://doi.org/10.1186/s12915-021-01181-3

47. Liang W, Qi Y, Yi H, Mao C, Meng Q, Wang H, Zheng C. The Roles of Adipose Tissue Macrophages in Human Disease. Front Immunol. 2022;13:908749. https://doi.org/10.3389/fimmu.2022.908749

48. Oñate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Díez-Caballero A, Ballesta-López C, Moscatiello F, Herrero J, Badimon L. The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012;26(10):4327-4236. https://doi.org/10.1096/fj.12-207217

49. Strong AL, Hunter RS, Jones RB, Bowles AC, Dutreil MF, Gaupp D, Hayes DJ, Gimble JM, Levi B, McNulty MA, Bunnell BA. Obesity inhibits the osteogenic differentiation of human adipose-derived stem cells. J Transl Med. 2016;14:27. https://doi.org/10.1186/s12967-016-0776-1

50. Frazier TP, Gimble JM, Devay JW, Tucker HA, Chiu ES, Rowan BG. Body mass index affects proliferation and osteogenic differentiation of human subcutaneous adipose tissue-derived stem cells. BMC Cell Biol. 2013;14:34. https://doi.org/10.1186/1471-2121-14-34

51. Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology. 2007;148(2):868-877. https://doi.org/10.1210/en.2006-0687

52. Gustafson B, Smith U. Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem. 2006;281(14):9507-9516. https://doi.org/10.1074/jbc.M512077200

53. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab. 2009;297(5):E999-E1003. https://doi.org/10.1152/ajpendo.00377.2009

54. Wu CL, Diekman BO, Jain D, Guilak F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int J Obes (Lond). 2013;37(8):1079-1087. https://doi.org/10.1038/ijo.2012.171

55. Avogaro A, Fadini GP. Mechanisms of ectopic calcification: implications for diabetic vasculopathy. Cardiovasc Diagn Ther. 2015;5(5):343-352. https://doi.org/10.3978/j.issn.2223-3652.2015.06.05

56. Giai Via A, McCarthy MB, Francke M, Gennaro Pipino, Mazzocca AD, Nicola Maffulli. Francesco Oliva Hyperglycemia induces osteogenic differentiation of tendon derived mesenchymal stem cells. J. Transl. Sci. 2021;7(3). https://doi.org/10.15761/JTS.1000417

57. Bondarev AD, Tyurin-Kuzmin PA. Insulin-dependent signaling in multipotent mesenchymal stromal cells of adipose tissue. Genes and cells. 2022;17(3): 33-34. (In Russian). https://doi.org/10.23868/gc122119

58. Demidova TY, Zenina SG. Insulin resistance and its role in the development of diabetes and other conditions. current modalities to improve insulin sensitivity. Russian medical inquiry. 2019;3(10-2):116-122. (In Russian).

59. Barbagallo I, Li Volti G, Galvano F, Tettamanti G, Pluchinotta FR, Bergante S, Vanella L. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes. Exp Biol Med (Maywood). 2017;242(10):1079-1085. https://doi.org/10.1177/1535370216681552

60. Wang L, Zhang L, Liang X, Zou J, Liu N, Liu T, Wang G, Ding X, Liu Y, Zhang B, Liang R, Wang S. Adipose Tissue-Derived Stem Cells from Type 2 Diabetics Reveal Conservative Alterations in Multidimensional Characteristics. Int J Stem Cells. 2020;13(2):268-278. https://doi.org/10.15283/ijsc20028.


Review

For citations:


Slesareva T.A., Uchasova E.G., Dyleva Yu.A., Belik E.V., Gruzdeva O.V. The influence of risk factors for cardiovascular diseases on the morphofunctional properties of mesenchymal stem cells. Fundamental and Clinical Medicine. 2024;9(4):95-106. (In Russ.) https://doi.org/10.23946/2500-0764-2024-9-4-95-106

Views: 148


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)