Аэрогенный механизм передачи больничных патогенов
https://doi.org/10.23946/2500-0764-2020-5-4-97-103
Аннотация
На протяжении десятилетий многие аспекты аэрогенной передачи больничных патогенов были и остаются предметом научных дискуссий. Пандемия COVID 19 со всей очевидностью показала необходимость обобщения современных знаний об аэрогенном механизме передачи возбудителей и поиска ответов на нерешенные вопросы.
Цель обзора − суммировать накопленные результаты исследований о биологических аэрозолях, медицинских технологиях, при которых возможна их генерация, особенностях распространения в больничной среде, закономерностях реализации аэрогенного механизма в зависимости от размера частиц аэрозоля, их формы, морфологического и химического состава, термо-и фотофоретического эффектов, эффекта коагуляции, особенностях распространения облака аэрозолей в больничной среде, содержащихся в нем патогенах и их концентрации.
Заключение. Один из наиболее важных вопросов заключается в том, почему некоторые частицы, выброшенные во время любой дыхательной деятельности, несут патогены, а некоторые − нет. Необходимо уточнить, зависит ли носительство от размера частиц, места заражения, места образования частиц (которое может отличаться от места заражения), концентрации патогена в слизи, изменений характера слизи, вирулентности самого патогена. Более того, похожи ли частицы, несущие вирус, на частицы, переносящие бактерии и грибы? Зависит ли сохранение резервуара внутрибольничных патогенов от морфологического и химического состава пыли. Эти вопросы имеют первостепенное значение для понимания роли дополнительных резервуаров патогенов в больничной среде, влияния поллютантов внешней среды, современных материалов, применяемых в уходе за пациентами и лечебном процессе, на реализацию воздушно-пылевого пути, роли физиологических ниш, которые патогены занимают в организме человека и во время передачи болезней.
Об авторах
Е. Б. БрусинаРоссия
Брусина Елена Борисовна, доктор медицинских наук, профессор, заведующий кафедрой эпидемиологии, инфекционных болезней и дерматовенерологии
650056, г. Кемерово, ул. Ворошилова, 22а
Е. А. Чезганова
Россия
Чезганова Евгения Андреевна, аспирант кафедры эпидемиологии, инфекционных болезней и дерматовенерологии
650056, г. Кемерово, ул. Ворошилова, 22а
О. М. Дроздова
Россия
Дроздова Ольга Михайловна, доктор медицинских наук, профессор, профессор кафедры эпидемиологии, инфекционных болезней и дерматовенерологии
650056, г. Кемерово, ул. Ворошилова, 22а
Список литературы
1. Surgical operations and procedures statistics. Statistics Explained. Available at: https://ec.europa.eu/eurostat/ statisticsexplained/. Accessed: 10 Oct, 2020.
2. Sattar SA, Ijaz MK. The Role of Indoor Air as a Vehicle for Human Pathogens: Summary of Presentations, Knowledge Gaps, and Directions for the Future. Am J Infect Control. 2016;44(9):144-146. https://doi.org/10.1016/j. ajic.2016.06.006
3. Громашевский Л.В., ред. Механизм передачи инфекции: (Учение о механизме передачи возбудителей инфекционных болезней и его значение в эпидемиологии). 2-е изд., пересмотр. и доп. Киев: Госмедиздат УССР; 1962
4. Башенин В.А. Курс общей эпидемиологии. 2-е изд., испр. и доп. М.; Л.: Наркомздрав СССР – Биомедгиз; 1938 (М. : 16 тип. треста «Полиграфкнига»).
5. Чекман И.С., Сыровая А.О., Андреева С.В., Макаров В.А. Аэрозоли – дисперсные системы. Киев-Харьков; 2013
6. Slonim NB, Chapin JL. Respiratory Physiology. Saint Louis: The CV Mosby Company; 1967.
7. Ross BB. Physical dynamics of the cough mechanism. Journal of Applied Physiology. 1955;8(3):264-268. https://doi. org/10.1152/jappl.1955.8.3.264
8. Gebhart J, Anselm A, Heyder J, Stalhofen W. The human lung as aerosol particle Generator. Journal of Aerosol Medicine. 1988;1:196-197.
9. Holmgren H, Ljungstrom E, Almstrand A-C, Bake B, Olin AC. Size distribution of exhaled particles in the range from 0.01 to 2.0μM. Journal of Aerosol Science. 2010;41(5):439-446. https://doi.org/10.1016/j.jaerosci.2010.02.011
10. Haslbeck K, Schwarz K, Hohlfeld JM, Seume JR, Koch W. Submicron droplet formation in the human lung. Journal of Aerosol Science 2010;41(5):429-438. https://doi.org/10.1016/j. jaerosci.2010.02.010
11. Morawska JG, Ristovski L, Hargreaves Z, Mengersen M., Chao K, Wan Ch, Li M-P, Xie Y, Katoshevski X, Corbett D, Shay. Modality of human expired aerosol size distributions. Journal of Aerosol Science - J AEROSOL SCI. 2011;42(12):839-851. https://doi.org/10.1016/j.jaerosci.2011.07.009
12. Sui Huang. COVID-19: Why we should all wear masks – there is new scientific rationale. Available at: https://medium.com/@ Cancerwarrior/covid-19-why-we-should-all-wear-masksthere-is-new-scientific-rationale-280e08ceee71 Accessed: 28 November, 2020.
13. Wells WF. On airborne infection: study II. Droplets and droplet nuclei. American Journal of Hygiene. 1934;1934:611-618. https://www.cabdirect.org/cabdirect/abstract/19352700487
14. Hamburger M, Roberston OH. Expulsion of Group A hemolytic streptococci in droplets and droplet nuclei by sneezing, coughing and talking. Am J Med. 1948;4(5):690-701. https:// doi.org/10.1016/s0002-9343(48)90392-1
15. WHO. Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care. WHO/CDS/EPR/2007.6. Available at:http://www.who.int/ csr/resources/publications/WHO_CDS_EPR_2007_6c.pdf Accessed: 28 November, 2020.
16. Siegel JD, Rhinehart E, Jackson M, Chiarello L, Committee HICPA. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings [cited 2008 December 8]. 2007. Available at: http://www.cdc.gov/ ncidod/dhqp/pdf/isolation2007.pdf. Accessed: 28 November, 2020.
17. Nicas M, Nazaroff WW, Hubbard A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. 2005;2(3):143-154. https:// doi.org/10.1080/15459620590918466
18. Stilianakis NI, Drossinos Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J R Soc Interface. 2010;7(50):1355-1366. https://doi.org/10.1098/ rsif.2010.0026
19. Gralton J, Tovey E, McLaws M-L, Rawlinson WD. The role of particle size in aerosolised pathogen transmission: A review. J Infect. 2011;62(1):1-13. https://doi.org/10.1016/j. jinf.2010.11.010
20. Parkhomchuk EV, Gulevich DG, Taratayko AI, Baklanov AM, Selivanova AV, Trubitsyna TA, Voronova IV, Kalinkin PN, Okunev AG, Rastigeev SA, Reznikov VA, Semeykina VS, Sashkina KA, Parkhomchuk VV. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry. Chemosphere. 2016;159:80-88. https://doi. org/10.1016/j.chemosphere.2016.05.078
21. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. Sci Rep. 2019;9(1):2348. https://doi.org/10.1038/s41598-019-38808-z
22. Eggers J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics. 1997;69:865-929. https:// doi.org/10.1103/RevModPhys.69.865
23. Girod S, Zahm JM, Plotkowski C, Beck G, Puchelle E. Role of the physiochemical properties of mucus in the protection of the respiratory epithelium. Eur Respir J. 1992;5(4):477-487. PMID: 1563506
24. Bourouiba L, Dehandschoewercker E, Bush J. (2014). Violent expiratory events: On coughing and sneezing. J Fluid Mech. 745:537-563. https://doi.org/10.1017/jfm.2014.88
25. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355-359. https://doi. org/10.1038/nature04153
26. Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease. Cell Host Microbe. 2015;18(4):398-401. https://doi. org/10.1016/j.chom.2015.09.013
27. Tiffany A, Riley S, Metcalf CJ, Grenfell BT. Spatial and temporal dynamics of superspreading events in the 2014- 2015 West Africa Ebola epidemic. Proc Natl Acad Sci USA. 2017;114(9):2337-2342. https://doi.org/0.1073/ pnas.1614595114
28. Chauveaux D. Preventing surgical-site infections: measures other than antibiotics. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S77-83. https://doi.org/10.1016/j.otsr.2014.07.028
29. Черемисин А.А., Кушнаренко А.В., Кузьмин Д.А. Черников С.В., Шнипов И.С. Параллельное моделирование фотофореза аэрозольных кластеров в разреженной газовой среде. Международный симпозиум «Атмосферная Радиация и Динамика»:тез. докл. СПб.: Изд-во СПбГУ;2015:180-181
30. Lee V, Waitukaitis S, Miskin M, Jaeger HM. Direct observation of particle interactions and clustering in charged granular streams. Nature Phys. 2015;11: 733-737. https://doi. org/10.1038/nphys3396
31. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. https://doi.org/10.1371/ journal.pone.0035797
32. Roberts K, Hathway A, Fletcher LA, Beggs C, Elliott M, Sleigh A. Bioaerosol production on a respiratory ward. Indoor and Built Environment. 2006;5:35-40. https://doi. org/10.1177/1420326X06062562
33. Zemouri C, de Soet H, Crielaard W, Laheij A. A scoping review on bio-aerosols in healthcare and the dental environment. PLoS One. 2017;12(5):e0178007. https://doi.org/10.1371/journal. pone.017800
34. Чезганова Е.А., Ефимова А.Р., Сахарова В.М., Ефимова А.Р., Созинов С.А., Исмагилов З.Р., Брусина Е.Б. Оценка роли пыли в формировании резервуара мультирезистентных госпитальных штаммов микроорганизмов в отделениях хирургического профиля. Фундаментальная и клиническая медицина. 2020;5(1):15-25 https://doi.org/10.23946/2500-0764-2020-5-1-15-25
Рецензия
Для цитирования:
Брусина Е.Б., Чезганова Е.А., Дроздова О.М. Аэрогенный механизм передачи больничных патогенов. Фундаментальная и клиническая медицина. 2020;5(4):97-103. https://doi.org/10.23946/2500-0764-2020-5-4-97-103
For citation:
Brusina Е.В., Chezganova E.A., Drozdova О.M. Airborne transmission of hospital pathogens. Fundamental and Clinical Medicine. 2020;5(4):97-103. (In Russ.) https://doi.org/10.23946/2500-0764-2020-5-4-97-103