Preview

Fundamental and Clinical Medicine

Advanced search

Airborne transmission of hospital pathogens

https://doi.org/10.23946/2500-0764-2020-5-4-97-103

Abstract

For decades, there have been a number of controversial issues regarding the airborne transmission of hospital pathogens. Here we decided to perform a critical review on this topic in light of the current COVID-19 pandemic. We summarise the existing knowledge on biological aerosols including techniques of their generation, propagation of bioaerosol particles in a hospital environment, particle size-, shape- and composition-dependent airborne transmission, and microorganisms inhabitating such particles. It is still unclear which of the particles transfer the pathogens, which of the pathogens are capable of adhering to the particulate matter, and whether such adhesion affects pathogen virulence. Intriguingly, viruses, bacteria and fungi seemingly have distinct patterns of interactions with the bioaerosols. Moreover, particle formation and their colonization may be separated in time, further complicating the puzzle. Apparently, pathogen interactions with the particulate matter are of paramount importance to better understand the role of bioaerosol particles as a potential pathogen reservoir in the hospital environment and to properly assess the influence of environmental pollutants, novel biomedical materials and treatment technologies on airborne transmission of hospital pathogens.

About the Authors

Е. В. Brusina
Kemerovo State Medical University
Russian Federation

Elena B. Brusina, MD, DSc, Professor, Head of the Department of Epidemiology, Infectious Diseases, Dermatology and Venereology

22a, Voroshilova Street, Kemerovo, 650056



E. A. Chezganova
Kemerovo State Medical University
Russian Federation

Evgenia A. Chezganova, MD, PhD Student, Department of Epidemiology, Infectious Diseases, Dermatology and Venereology

22a, Voroshilova Street, Kemerovo, 650056



О. M. Drozdova
Kemerovo State Medical University
Russian Federation

Olga M. Drozdova, MD, DSc, Professor, Department of Epidemiology, Infectious Diseases, Dermatology and Venereology

22a, Voroshilova Street, Kemerovo, 650056



References

1. Surgical operations and procedures statistics. Statistics Explained. Available at: https://ec.europa.eu/eurostat/ statisticsexplained/. Accessed: 10 Oct, 2020.

2. Sattar SA, Ijaz MK. The Role of Indoor Air as a Vehicle for Human Pathogens: Summary of Presentations, Knowledge Gaps, and Directions for the Future. Am J Infect Control. 2016;44(9):144-146. https://doi.org/10.1016/j. ajic.2016.06.006

3. Gromashevskij LV, editor. Mehanizm peredachi infekcii: (Uchenie o mehanizme peredachi vozbuditelej infekcionnyh boleznej i ego znachenie v jepidemiologii). 2nd ed., revised and supplemented with new information. Kiev: Gosmedizdat USSR; 1962. (In Russ.).

4. Bashenin VA. Kurs obshhej jepidemiologii. 2nd ed., revised and supplemented with new information. Moscow; Leningrad: Narkomzdrav SSSR – Biomedgiz; 1938 (Moscow: 16 tip. tresta «Poligrafkniga»). (In Russ.).

5. Chekman IS, Syrovaja AO, Andreeva SV, Makarov VA. Ajerozoli – dispersnye sistemy. Kiev-Kharkiv; 2013. (In Russ.).

6. Slonim NB, Chapin JL. Respiratory Physiology. Saint Louis: The CV Mosby Company; 1967.

7. Ross BB. Physical dynamics of the cough mechanism. Journal of Applied Physiology. 1955;8(3):264-268. https://doi. org/10.1152/jappl.1955.8.3.264

8. Gebhart J, Anselm A, Heyder J, Stalhofen W. The human lung as aerosol particle Generator. Journal of Aerosol Medicine. 1988;1:196-197.

9. Holmgren H, Ljungstrom E, Almstrand A-C, Bake B, Olin AC. Size distribution of exhaled particles in the range from 0.01 to 2.0μM. Journal of Aerosol Science. 2010;41(5):439-446. https://doi.org/10.1016/j.jaerosci.2010.02.011

10. Haslbeck K, Schwarz K, Hohlfeld JM, Seume JR, Koch W. Submicron droplet formation in the human lung. Journal of Aerosol Science 2010;41(5):429-438. https://doi.org/10.1016/j. jaerosci.2010.02.010

11. Morawska JG, Ristovski L, Hargreaves Z, Mengersen M., Chao K, Wan Ch, Li M-P, Xie Y, Katoshevski X, Corbett D, Shay. Modality of human expired aerosol size distributions. Journal of Aerosol Science - J AEROSOL SCI. 2011;42(12):839-851. https://doi.org/10.1016/j.jaerosci.2011.07.009

12. Sui Huang. COVID-19: Why we should all wear masks – there is new scientific rationale. Available at: https://medium.com/@ Cancerwarrior/covid-19-why-we-should-all-wear-masksthere-is-new-scientific-rationale-280e08ceee71 Accessed: 28 November, 2020.

13. Wells WF. On airborne infection: study II. Droplets and droplet nuclei. American Journal of Hygiene. 1934;1934:611-618. https://www.cabdirect.org/cabdirect/abstract/19352700487

14. Hamburger M, Roberston OH. Expulsion of Group A hemolytic streptococci in droplets and droplet nuclei by sneezing, coughing and talking. Am J Med. 1948;4(5):690-701. https:// doi.org/10.1016/s0002-9343(48)90392-1

15. WHO. Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care. WHO/CDS/EPR/2007.6. Available at:http://www.who.int/ csr/resources/publications/WHO_CDS_EPR_2007_6c.pdf Accessed: 28 November, 2020.

16. Siegel JD, Rhinehart E, Jackson M, Chiarello L, Committee HICPA. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings [cited 2008 December 8]. 2007. Available at: http://www.cdc.gov/ ncidod/dhqp/pdf/isolation2007.pdf. Accessed: 28 November, 2020.

17. Nicas M, Nazaroff WW, Hubbard A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. 2005;2(3):143-154. https:// doi.org/10.1080/15459620590918466

18. Stilianakis NI, Drossinos Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J R Soc Interface. 2010;7(50):1355-1366. https://doi.org/10.1098/ rsif.2010.0026

19. Gralton J, Tovey E, McLaws M-L, Rawlinson WD. The role of particle size in aerosolised pathogen transmission: A review. J Infect. 2011;62(1):1-13. https://doi.org/10.1016/j. jinf.2010.11.010

20. Parkhomchuk EV, Gulevich DG, Taratayko AI, Baklanov AM, Selivanova AV, Trubitsyna TA, Voronova IV, Kalinkin PN, Okunev AG, Rastigeev SA, Reznikov VA, Semeykina VS, Sashkina KA, Parkhomchuk VV. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry. Chemosphere. 2016;159:80-88. https://doi. org/10.1016/j.chemosphere.2016.05.078

21. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol emission and superemission during human speech increase with voice loudness. Sci Rep. 2019;9(1):2348. https://doi.org/10.1038/s41598-019-38808-z

22. Eggers J. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics. 1997;69:865-929. https:// doi.org/10.1103/RevModPhys.69.865

23. Girod S, Zahm JM, Plotkowski C, Beck G, Puchelle E. Role of the physiochemical properties of mucus in the protection of the respiratory epithelium. Eur Respir J. 1992;5(4):477-487. PMID: 1563506

24. Bourouiba L, Dehandschoewercker E, Bush J. (2014). Violent expiratory events: On coughing and sneezing. J Fluid Mech. 745:537-563. https://doi.org/10.1017/jfm.2014.88

25. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355-359. https://doi. org/10.1038/nature04153

26. Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: The Role of Super-Spreaders in Infectious Disease. Cell Host Microbe. 2015;18(4):398-401. https://doi. org/10.1016/j.chom.2015.09.013

27. Tiffany A, Riley S, Metcalf CJ, Grenfell BT. Spatial and temporal dynamics of superspreading events in the 2014- 2015 West Africa Ebola epidemic. Proc Natl Acad Sci USA. 2017;114(9):2337-2342. https://doi.org/0.1073/ pnas.1614595114

28. Chauveaux D. Preventing surgical-site infections: measures other than antibiotics. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S77-83. https://doi.org/10.1016/j.otsr.2014.07.028

29. Cheremisin AA, Kushnarenko AV, Kuz'min DA. Chernikov SV, Shnipov IS. Parallel'noe modelirovanie fotoforeza ajerozol'nyh klasterov v razrezhennoj gazovoj srede. Mezhdunarodnyj simpozium «Atmosfernaja Radiacija i Dinamika»: tez. dokl. Saint Peterburg: Izd-vo SPbGU;2015:180-181 (In Russ.).

30. Lee V, Waitukaitis S, Miskin M, Jaeger HM. Direct observation of particle interactions and clustering in charged granular streams. Nature Phys. 2015;11: 733-737. https://doi. org/10.1038/nphys3396

31. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797. https://doi.org/10.1371/ journal.pone.0035797

32. Roberts K, Hathway A, Fletcher LA, Beggs C, Elliott M, Sleigh A. Bioaerosol production on a respiratory ward. Indoor and Built Environment. 2006;5:35-40. https://doi. org/10.1177/1420326X06062562

33. Zemouri C, de Soet H, Crielaard W, Laheij A. A scoping review on bio-aerosols in healthcare and the dental environment. PLoS One. 2017;12(5):e0178007. https://doi.org/10.1371/journal. pone.017800

34. Chezganova EA, Efimova OS, Sakharova VM, Efimova AR, Sozinov SA, Ismagilov, ZR, Brusina EB. Particulate matter as a possible reservoir of multidrug-resistant microorganisms in surgical healthcare settings. Fundamental and Clinical Medicine. 2020;5(1):15-25. (In Russ.) https://doi.org/10.23946/2500-0764-2020-5-1-15-25


Review

For citations:


Brusina Е.В., Chezganova E.A., Drozdova О.M. Airborne transmission of hospital pathogens. Fundamental and Clinical Medicine. 2020;5(4):97-103. (In Russ.) https://doi.org/10.23946/2500-0764-2020-5-4-97-103

Views: 77732


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-0764 (Print)
ISSN 2542-0941 (Online)